Measuring Empirical Computational
Complexity Using trend-prof
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Algorithmic Scalability
IS a Timeless Concern

 No matter your resources, an unnecessary
super-linearity can eat them all.

- That is, never send a quadratic algorithm to do a
linear algorithm's job.

 We want an understanding of performance
that has

- the concreteness of empiricism on a realistic
set of workloads for a real program,

- and the generality of a trend without the
difficulty of theoretical analysis.




Empirical Asymptotic.: Combining
the Strength of Two Approaches

Consider performance of Insertion Sort
 NOT: Theoretical . analysis

- worst case ©(n?)

- best case O(n)
- expected case depends on input distribution

« NOT: Empirical . gprof
- e.qg., 2% of total time
« BUT: Empirical . trend-prof

- empirically scales as, e.g., n'2
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* For each line of the program
e Relate cost to input size
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Our Method

 Measure performance, making a matrix:

- one row per line of code,
- one column per input workload.

 Cluster rows based on linear correlation.
* Fit rows to a power law.
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Running Example: bsort

vold bsort (int n,

int 1=0;

while (1<n)
int J=1+1;

while
1f

++1;

J

(J<n)

{

{

(arr[1]
swap (&arr[i], &arr([3j]);
J++;

J

J

int *arr) {

> arr[J])




Measure Performance,
Making a Matrix

- Run workloads and measure performance.

- Record the results for each workload as a column of the matrix.

Cost Workload,
Linel 1
Line2 ol

Line5 1770




Measure Performance,
Making a Matrix

- Run workloads and measure performance.

- Record the results for each workload as a column of the matrix.

Cost Work (load) Work,
Linel 1 1

Line2 ol 201

Line5 1770 19900




Measure Performance,
Making a Matrix

- Run workloads and measure performance.

- Record the results for each workload as a column of the matrix.

Cost Work, Work, ... Work
Lime1 1 1 ... 1
Lime2 ol 201 ... 00001

Line, 1770 19900 ... [1.79997e9




Problem 1: Too Many Lines of Code

Program Basic Blocks
bzip 1032
maximus 1220
elsa 33647
banshee 13308

* Leads to too many results to look at
- Observation: Many lines vary together




Solution 1: Clusters,
Subsets of Correlated Lines of Code

* Greedily assign lines of codé to all clusters
whose cluster rep they fit with R? > 0.98

* Lines of code that don't fit any cluster rep
become new cluster reps

* Initial cluster rep is the input size

0
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Empirical Fact: Clustering Works

Basic Costly
Program |Blocks | Clusters | Clusters
bzip 1032 23 10
maximus 1220 13 9
elsa 33647 1489 30
banshee | 13308 859 26

e Order of magnitude less clusters than blocks
* Furthermore there are few “costly” clusters

- a cluster is “costly” if it accounts for more than
2% of total performance on any workload
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Running Example:
Clusters for bsort

vold bsort (int n, int *arr)

: 1int 1=0;
: while (1<n) {

int jJj=i+1;

: Swap!&arr‘l‘, &arr‘j‘!;

F
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From Now on, Think Clusters
Rather Than Lines of Code

 Use the clusters as “abstract lines of code”

- from now on, we just call them lines of code
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Problem 2: How Do We Get a
Trend From a Bunch O’Dots?
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Solution 2: Fit the Matrix
Rows to a Power Law

Look for performance trends:
« each row records work done by each line of code

Cost Work, Work, .. Work,,
Linel 1 1 ... 1
Line2 ol 201 ... 00001

Line5 1770 19900 ... 1.79997e9
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...\Versus a User-Defined
Notion of Input Size

Look for performance trends:
e each row records work done by each block
» with respect to user-specified input size

Cost Work, Work, .. Work
InputSize 60 200 ... 60000
Line, 1 1 ... 1
Line, o1 201 ... 60001

Line, 1770 19900 ... 1.79997e9
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Again, Model Performance as a
Powerlaw of Input Size

(Cost) = a * (Input Size) "

* Low dimensional
- gives us high confidence for less data
* Easy to interpret

e Captures the high-order term

- logarithmic factors are quite small in practice
- polynomials converge to high order term
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Demo
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Running Example:

trend-prof results for bsort

Max Cost
in billions of
basic block
executions

1.00

2.5

Cluster
Name

Swaps

Cluster Total

as a function of
Input Size

30n 1.93

RZ
O=bad
1=good

0.996

<1

Size

29 n 1.00

1.00
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bsort: Plots

e ey residuals O
1e+08 : l O
1e+07 : 0 50" °°
| 8 ¥ ©°
- ws} O -
16008 - swaps O - O
» Best-fit Plot * Residuals Plot
- X: log(size) - y: residual
- y: log(swap cluster) - lack of randomness
_ _ means the model
* line slope = 1.93 missed something
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trend-prof flow chart

@rkloam
i \_run workloads /
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@S of trenB«\ \ powerlaw fit /

user trend -prof
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Results




Confirmed Linear Scaling
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* Ukkonen's Algorithm (maximus)

- Theoretical Complexity: O(n)
- Empirical Complexity: ~n
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Empirical Comp
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lexity: Andersen’s

Slope = 1.98

1e+08

* Andersen's points-to analysis (banshee)

- Theoretical Complexity: 0(n?)
- Empirical Complexity: ~ n-98
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Empirical Complexity: GLR
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* GLR C++ parser (elkhound / elsa)

- Theoretical Complexity: 0(n?)
- Empirical Complexity: ~n'13

27



How well do you know your code?
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* Output routines (maximus)
- Theoretical Complexity: 0(n)?
- Empirical Complexity: ~ n1-30
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Algorithms in context

Slope = 1.21

R2=0.95

* The linear-time list append in banshee's

parser is a bug
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Algorithms in Context
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* The linear-time list append in Elsa's name
lookup code is not a bug
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Results Recap

* Confirmed linear scaling (maximus)
* Empirical scalability (Andersen's, GLR)
* Unexpected behavior (maximus)

* Algorithms in context (elsa, banshee)

- found a performance bug in banshee's parser
- found similar situation, but no bug in elsa
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Technical Contributions of Part 1

e Built trend-prof

- a tool to measure empirical computational
complexity

» Discovered the following empirical facts
- programs have few clusters, fewer costly ones
- powerlaw fits work well

» Showed that powerlaw fits of basic block
counts reveal general trends

- low-dimension but still nice precision
- plots reveal the subtleties of actual computation...
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Conclusion

e Semi-automatically empirically modeling
performance trends as a function of input
size works

- examining the matrix rows instead of columns
yields insight into scalability

- control flow suggests precise models that
sometimes improve upon direct models

 Comparing these models to expectation finds
bugs or finds properties of the data

* Trend-prof belongs in the toolbox for
performance / scalability testing
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Thanks

 To Alex Aiken for all the stuff advisors do

 To Daniel Wilkerson for wonderful
suggestions for improving this and other talks
as well as our collaboration
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Questions?

Code

trend-prof.tigris.org
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