
Measuring Empirical Computational
Complexity Using trend-prof

Simon Fredrick Vicente Goldsmith
Daniel Shawcross Wilkerson

Alex Aiken

log(Input Size)

log(Cost)

Slope = 1.98

1

Algorithmic Scalability
is a Timeless Concern

 No matter your resources, an unnecessary
super-linearity can eat them all.
− That is, never send a quadratic algorithm to do a

linear algorithm's job.

 We want an understanding of performance
that has
− the concreteness of empiricism on a realistic

set of workloads for a real program,
− and the generality of a trend without the

difficulty of theoretical analysis.

2

Empirical Asymptotic: Combining
the Strength of Two Approaches

Consider performance of Insertion Sort
 NOT: Theoretical Asymptotic: analysis

− worst case Θ(n2)

− best case Θ(n)
− expected case depends on input distribution

 NOT: Empirical Pointwise: gprof
− e.g., 2% of total time

 BUT: Empirical Asymptotic: trend-prof
− empirically scales as, e.g., n1.2

3

Core Idea

 For each line of the program
 Relate cost to input size

Input Size

Cost

4

Our Method

 Measure performance, making a matrix:
− one row per line of code,
− one column per input workload.

 Cluster rows based on linear correlation.
 Fit rows to a power law.

5

Running Example: bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3: int j=i+1;
4: while (j<n) {
5: if (arr[i] > arr[j])
6: swap(&arr[i], &arr[j]);
7: j++; }
8: ++i; } }

6

Cost Workload1

Line1 1

Line2 61
...
Line5 1770
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance,
Making a Matrix

7

Cost Work(load)1 Work2

Line1 1 1

Line2 61 201
...
Line5 1770 19900
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance,
Making a Matrix

8

Cost Work1 Work2 ... Work60

Line1 1 1 ... 1

Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance,
Making a Matrix

9

Problem 1: Too Many Lines of Code

 Leads to too many results to look at
− Observation: Many lines vary together

10

Solution 1: Clusters,
Subsets of Correlated Lines of Code
 Greedily assign lines of code to all clusters

whose cluster rep they fit with R2 > 0.98
 Lines of code that don't fit any cluster rep

become new cluster reps
 Initial cluster rep is the input size

11

Empirical Fact: Clustering Works

 Order of magnitude less clusters than blocks
 Furthermore there are few “costly” clusters

− a cluster is “costly” if it accounts for more than
2% of total performance on any workload

12

Running Example:
Clusters for bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3: int j=i+1;
4: while (j<n) {
5: if (arr[i] > arr[j])
6: swap(&arr[i], &arr[j]);
7: j++; }
8: ++i; } }

13

From Now on, Think Clusters
Rather Than Lines of Code

 Use the clusters as “abstract lines of code”
− from now on, we just call them lines of code

14

Problem 2: How Do We Get a
Trend From a Bunch O’Dots?

What The Heck Is This Trend ?!
15

Cost Work1 Work2 ... Work60

Line1 1 1 ... 1

Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

Look for performance trends:
 each row records work done by each line of code

Solution 2: Fit the Matrix
Rows to a Power Law

16

Cost Work1 Work2 ... Work60

InputSize 60 200 ... 60000

Line1 1 1 ... 1
Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

Look for performance trends:
 each row records work done by each block
 with respect to user-specified input size

...Versus a User-Defined
Notion of Input Size

17

Again, Model Performance as a
Powerlaw of Input Size

(Cost) = a * (Input Size) b

 Low dimensional
− gives us high confidence for less data

 Easy to interpret
 Captures the high-order term

− logarithmic factors are quite small in practice
− polynomials converge to high order term

18

Handy Fact:
Powerlaws are Lines

on Log-Log Axes

log (Cost) = log a + b * log (Input Size)

19

Demo

20

Running Example:
trend-prof results for bsort

21

bsort: Plots

 Best-fit Plot
− x: log(size)
− y: log(swap cluster)

 line slope = 1.93

 Residuals Plot
− y: residual
− lack of randomness

means the model
missed something

22

 trend-prof flow chart

run workloads

input size

workloads

matrix

cluster

matrix of cluster totals

powerlaw fitplots of trends

 user trend-prof
23

Results

24

Confirmed Linear Scaling

 Ukkonen's Algorithm (maximus)
− Theoretical Complexity: O(n)
− Empirical Complexity: ~ n

Input Size
Cost

25

Empirical Complexity: Andersen's

 Andersen's points-to analysis (banshee)
− Theoretical Complexity: O(n3)
− Empirical Complexity: ~ n1.98

log(Input Size)

log(Cost)

Slope = 1.98

26

Empirical Complexity: GLR

 GLR C++ parser (elkhound / elsa)
− Theoretical Complexity: O(n3)
− Empirical Complexity: ~n1.13

log(Cost)
log(Input Size)

Slope = 1.13

27

How well do you know your code?

 Output routines (maximus)
− Theoretical Complexity: O(n)?
− Empirical Complexity: ~ n1.30

log(Cost)
log(Input Size)

Slope = 1.30

28

Algorithms in context

 The linear-time list append in banshee's
parser is a bug

Slope = 1.21

R2 = 0.95

29

Algorithms in Context

 The linear-time list append in Elsa's name
lookup code is not a bug

R2 = 0.65

30

Results Recap

 Confirmed linear scaling (maximus)
 Empirical scalability (Andersen's, GLR)
 Unexpected behavior (maximus)
 Algorithms in context (elsa, banshee)

− found a performance bug in banshee's parser
− found similar situation, but no bug in elsa

31

Technical Contributions of Part 1

 Built trend-prof
− a tool to measure empirical computational

complexity

 Discovered the following empirical facts
− programs have few clusters, fewer costly ones
− powerlaw fits work well

 Showed that powerlaw fits of basic block
counts reveal general trends
− low-dimension but still nice precision
− plots reveal the subtleties of actual computation...

32

Conclusion

 Semi-automatically empirically modeling
performance trends as a function of input
size works
− examining the matrix rows instead of columns

yields insight into scalability
− control flow suggests precise models that

sometimes improve upon direct models

 Comparing these models to expectation finds
bugs or finds properties of the data

 Trend-prof belongs in the toolbox for
performance / scalability testing

33

Thanks

 To Alex Aiken for all the stuff advisors do
 To Daniel Wilkerson for wonderful

suggestions for improving this and other talks
as well as our collaboration

34

Questions?

Code

trend-prof.tigris.org

Publications
S. F. Goldsmith, A. S. Aiken, D. S. Wilkerson. Measuring

Empirical Computational Complexity. FSE 2007.

S. F. Goldsmith. Measuring Emprical Computational
Complexity. PhD dissertation. UC Berkeley. 2009.

35

