
Measuring Empirical Computational
Complexity Using trend-prof

Simon Fredrick Vicente Goldsmith
Daniel Shawcross Wilkerson

Alex Aiken

log(Input Size)‏

log(Cost)‏

Slope = 1.98

1

Algorithmic Scalability
is a Timeless Concern

 No matter your resources, an unnecessary
super-linearity can eat them all.
− That is, never send a quadratic algorithm to do a

linear algorithm's job.

 We want an understanding of performance
that has
− the concreteness of empiricism on a realistic

set of workloads for a real program,
− and the generality of a trend without the

difficulty of theoretical analysis.

2

Empirical Asymptotic: Combining
the Strength of Two Approaches

Consider performance of Insertion Sort
 NOT: Theoretical Asymptotic: analysis

− worst case Θ(n2)

− best case Θ(n) ‏
− expected case depends on input distribution

 NOT: Empirical Pointwise: gprof
− e.g., 2% of total time

 BUT: Empirical Asymptotic: trend-prof
− empirically scales as, e.g., n1.2

3

Core Idea

 For each line of the program
 Relate cost to input size

Input Size

Cost

4

Our Method

 Measure performance, making a matrix:
− one row per line of code,
− one column per input workload.

 Cluster rows based on linear correlation.
 Fit rows to a power law.

5

Running Example: bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3: int j=i+1;
4: while (j<n) {
5: if (arr[i] > arr[j])
6: swap(&arr[i], &arr[j]);
7: j++; }
8: ++i; } }

6

Cost Workload1

Line1 1

Line2 61
...
Line5 1770
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance,
Making a Matrix

7

Cost Work(load)1 Work2

Line1 1 1

Line2 61 201
...
Line5 1770 19900
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance,
Making a Matrix

8

Cost Work1 Work2 ... Work60

Line1 1 1 ... 1

Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance,
Making a Matrix

9

Problem 1: Too Many Lines of Code

 Leads to too many results to look at
− Observation: Many lines vary together

10

Solution 1: Clusters,
Subsets of Correlated Lines of Code
 Greedily assign lines of code to all clusters

whose cluster rep they fit with R2 > 0.98
 Lines of code that don't fit any cluster rep

become new cluster reps
 Initial cluster rep is the input size

11

Empirical Fact: Clustering Works

 Order of magnitude less clusters than blocks
 Furthermore there are few “costly” clusters

− a cluster is “costly” if it accounts for more than
2% of total performance on any workload

12

Running Example:
Clusters for bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3: int j=i+1;
4: while (j<n) {
5: if (arr[i] > arr[j])
6: swap(&arr[i], &arr[j]);
7: j++; }
8: ++i; } }

13

From Now on, Think Clusters
Rather Than Lines of Code

 Use the clusters as “abstract lines of code”
− from now on, we just call them lines of code

14

Problem 2: How Do We Get a
Trend From a Bunch O’Dots?

What The Heck Is This Trend ?!
15

Cost Work1 Work2 ... Work60

Line1 1 1 ... 1

Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

Look for performance trends:
 each row records work done by each line of code

Solution 2: Fit the Matrix
Rows to a Power Law

16

Cost Work1 Work2 ... Work60

InputSize 60 200 ... 60000

Line1 1 1 ... 1
Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

Look for performance trends:
 each row records work done by each block
 with respect to user-specified input size

...Versus a User-Defined
Notion of Input Size

17

Again, Model Performance as a
Powerlaw of Input Size

(Cost) = a * (Input Size) b

 Low dimensional
− gives us high confidence for less data

 Easy to interpret
 Captures the high-order term

− logarithmic factors are quite small in practice
− polynomials converge to high order term

18

Handy Fact:
Powerlaws are Lines

on Log-Log Axes

log (Cost) = log a + b * log (Input Size) ‏

19

Demo

20

Running Example:
trend-prof results for bsort

21

bsort: Plots

 Best-fit Plot
− x: log(size) ‏
− y: log(swap cluster) ‏

 line slope = 1.93

 Residuals Plot
− y: residual
− lack of randomness

means the model
missed something

22

 trend-prof flow chart

run workloads

input size

workloads

matrix

cluster

matrix of cluster totals

powerlaw fitplots of trends

 user trend-prof
23

Results

24

Confirmed Linear Scaling

 Ukkonen's Algorithm (maximus) ‏
− Theoretical Complexity: O(n) ‏
− Empirical Complexity: ~ n

Input Size
Cost

25

Empirical Complexity: Andersen's

 Andersen's points-to analysis (banshee) ‏
− Theoretical Complexity: O(n3) ‏
− Empirical Complexity: ~ n1.98

log(Input Size)‏

log(Cost)‏

Slope = 1.98

26

Empirical Complexity: GLR

 GLR C++ parser (elkhound / elsa) ‏
− Theoretical Complexity: O(n3) ‏
− Empirical Complexity: ~n1.13

log(Cost)‏
log(Input Size)‏

Slope = 1.13

27

How well do you know your code?

 Output routines (maximus) ‏
− Theoretical Complexity: O(n)?
− Empirical Complexity: ~ n1.30

log(Cost)‏
log(Input Size)‏

Slope = 1.30

28

Algorithms in context

 The linear-time list append in banshee's
parser is a bug

Slope = 1.21

R2 = 0.95

29

Algorithms in Context

 The linear-time list append in Elsa's name
lookup code is not a bug

R2 = 0.65

30

Results Recap

 Confirmed linear scaling (maximus) ‏
 Empirical scalability (Andersen's, GLR) ‏
 Unexpected behavior (maximus) ‏
 Algorithms in context (elsa, banshee) ‏

− found a performance bug in banshee's parser
− found similar situation, but no bug in elsa

31

Technical Contributions of Part 1

 Built trend-prof
− a tool to measure empirical computational

complexity

 Discovered the following empirical facts
− programs have few clusters, fewer costly ones
− powerlaw fits work well

 Showed that powerlaw fits of basic block
counts reveal general trends
− low-dimension but still nice precision
− plots reveal the subtleties of actual computation...

32

Conclusion

 Semi-automatically empirically modeling
performance trends as a function of input
size works
− examining the matrix rows instead of columns

yields insight into scalability
− control flow suggests precise models that

sometimes improve upon direct models

 Comparing these models to expectation finds
bugs or finds properties of the data

 Trend-prof belongs in the toolbox for
performance / scalability testing

33

Thanks

 To Alex Aiken for all the stuff advisors do
 To Daniel Wilkerson for wonderful

suggestions for improving this and other talks
as well as our collaboration

34

Questions?

Code

trend-prof.tigris.org

Publications
S. F. Goldsmith, A. S. Aiken, D. S. Wilkerson. Measuring

Empirical Computational Complexity. FSE 2007.

S. F. Goldsmith. Measuring Emprical Computational
Complexity. PhD dissertation. UC Berkeley. 2009.

35

