Measuring Empirical Computational Complexity Using trend-prof

Simon Fredrick Vicente Goldsmith Daniel Shawcross Wilkerson Alex Aiken

Algorithmic Scalability is a Timeless Concern

- No matter your resources, an unnecessary super-linearity can eat them all.
 - That is, never send a quadratic algorithm to do a linear algorithm's job.
- We want an understanding of performance that has
 - the concreteness of empiricism on a realistic set of workloads for a real program,
 - and the **generality of a trend** without the difficulty of theoretical analysis.

Empirical Asymptotic: Combining the Strength of Two Approaches

Consider performance of Insertion Sort

- NOT: Theoretical Asymptotic: analysis
 - worst case $\Theta(n^2)$
 - best case $\Theta(n)$
 - expected case depends on input distribution
- NOT: Empirical Pointwise: gprof
 - e.g., 2% of total time
- BUT: <u>Empirical Asymptotic</u>: trend-prof

- empirically scales as, *e.g.*, n^{1.2}

Core Idea

- For each line of the program
- Relate cost to input size

Our Method

- **Measure** performance, making a **matrix**:
 - one row per line of code,
 - one column per input workload.
- Cluster rows based on linear correlation.
- Fit rows to a power law.

Running Example: bsort

```
void bsort(int n, int *arr) {
1: int i=0;
2: while (i < n) {
3:
     int j=i+1;
4:
     while (j<n) {
5:
        if (arr[i] > arr[j])
6:
           swap(&arr[i], &arr[j]);
7:
     j++; }
8: ++i; } }
```

Measure Performance, Making a Matrix

- Run workloads and measure performance.
- Record the results for each workload as a column of the matrix.

Measure Performance, Making a Matrix

- Run workloads and measure performance.
- Record the results for each workload as a column of the matrix.

Cost	Work(load) ₁	Work ₂
Line ₁	1	1
Line ₂	61	201
 Line ₅	1770	19900

Measure Performance, Making a Matrix

- Run workloads and measure performance.
- Record the results for each workload as a column of the matrix.

Problem 1: Too Many Lines of Code

Program	Basic Blocks
bzip	1032
maximus	1220
elsa	33647
banshee	13308

- Leads to too many results to look at
 - Observation: Many lines vary together

Solution 1: *Clusters*, Subsets of Correlated Lines of Code

- Greedily assign lines of code^t to all clusters whose *cluster rep*^t they fit with R² > 0.98
- Lines of code that don't fit any cluster rep become new cluster reps
- Initial cluster rep is the input size

Empirical Fact: Clustering Works

Program	Basic Blocks	Clusters	Costly Clusters
bzip	1032	23	10
maximus	1220	13	9
elsa	33647	1489	30
banshee	13308	859	26

- Order of magnitude less clusters than blocks
- Furthermore there are few "costly" clusters
 - a cluster is "costly" if it accounts for more than 2% of total performance on *any* workload

Running Example: Clusters for bsort

void bsort(int n, int *arr) {

From Now on, Think *Clusters* Rather Than *Lines of Code*

- Use the clusters as "abstract lines of code"
 - from now on, we just call them lines of code

Problem 2: How Do We Get a Trend From a Bunch O'Dots?

What The Heck Is This Trend ?!

Solution 2: Fit the Matrix Rows to a Power Law

Look for performance trends:

• each row records work done by each line of code

...Versus a User-Defined Notion of Input Size

Look for performance trends:

- each row records work done by each block
- with respect to user-specified input size

Cost	Work ₁	Work ₂	 Work ₆₀
InputSize	60	200	 60000
Line ₁	1	1	 1
Line ₂	61	201	 60001
Line ₅	1770	19900	 1.79997e9

Again, Model Performance as a *Powerlaw* of Input Size

- Low dimensional
 - gives us high confidence for less data
- Easy to interpret
- Captures the high-order term
 - logarithmic factors are quite small in practice
 - polynomials converge to high order term

Demo

Running Example: trend-prof results for bsort

Max Cost in billions of basic block executions	Cluster Name	Cluster Total as a function of Input Size	R ² 0=bad 1=good
11	Compares	3.1 n ^{2.00}	1.00
2.5	Swaps	3.0 n ^{1.93}	0.996
< 1	Size	22 n ^{1.00}	1.00

bsort: Plots

- Best-fit Plot
 - x: log(size)
 - y: log(swap cluster)
- line slope = 1.93

- Residuals Plot
 - y: residual
 - lack of randomness means the model missed something

Results

Confirmed Linear Scaling

- Ukkonen's Algorithm (maximus)
 - Theoretical Complexity: O(n)
 - Empirical Complexity: ~ n

Empirical Complexity: Andersen's

- Andersen's points-to analysis (banshee)
 - Theoretical Complexity: $O(n^3)$
 - Empirical Complexity: ~ n^{1.98}

Empirical Complexity: GLR

- GLR C++ parser (elkhound / elsa)
 - Theoretical Complexity: *O*(n³)
 - Empirical Complexity: ~n^{1.13}

How well do you know your code?

- Output routines (maximus)
 - Theoretical Complexity: O(n)?
 - Empirical Complexity: ~ n^{1.30}

Algorithms in context

• The linear-time list append in banshee's parser is a bug

Algorithms in Context

• The linear-time list append in Elsa's name lookup code is not a bug

Results Recap

- Confirmed linear scaling (maximus)
- Empirical scalability (Andersen's, GLR)
- Unexpected behavior (maximus)
- Algorithms in context (elsa, banshee)
 - found a performance bug in banshee's parser
 - found similar situation, but no bug in elsa

Technical Contributions of Part 1

- Built trend-prof
 - a tool to measure empirical computational complexity
- Discovered the following empirical facts
 - programs have few clusters, fewer costly ones
 - powerlaw fits work well
- Showed that powerlaw fits of basic block counts reveal general trends
 - low-dimension but still nice precision
 - plots reveal the subtleties of actual computation...

Conclusion

- Semi-automatically empirically modeling performance trends as a function of input size works
 - examining the matrix rows instead of columns yields insight into scalability
 - control flow suggests precise models that sometimes improve upon direct models
- Comparing these models to expectation finds bugs or finds properties of the data
- Trend-prof belongs in the toolbox for performance / scalability testing

Thanks

- To Alex Aiken for all the stuff advisors do
- To Daniel Wilkerson for wonderful suggestions for improving this and other talks as well as our collaboration

Questions?

<u>Code</u> trend-prof.tigris.org

Publications

S. F. Goldsmith, A. S. Aiken, D. S. Wilkerson. Measuring Empirical Computational Complexity. FSE 2007.

S. F. Goldsmith. Measuring Emprical Computational Complexity. PhD dissertation. UC Berkeley. 2009.