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Algorithmic Scalability 
is a Timeless Concern

 No matter your resources, an unnecessary 
super-linearity can eat them all.
− That is, never send a quadratic algorithm to do a 

linear algorithm's job.

 We want an understanding of performance 
that has
− the concreteness of empiricism on a realistic 

set of workloads for a real program,
− and the generality of a trend without the 

difficulty of theoretical analysis.
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Empirical Asymptotic: Combining 
the Strength of Two Approaches

Consider performance of Insertion Sort
 NOT: Theoretical Asymptotic: analysis

− worst case Θ(n2) 

− best case Θ(n) ‏
− expected case depends on input distribution

 NOT: Empirical Pointwise: gprof
− e.g., 2% of total time

 BUT: Empirical Asymptotic: trend-prof
− empirically scales as, e.g., n1.2
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Core Idea

 For each line of the program
 Relate cost to input size

Input Size

Cost
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Our Method

 Measure performance, making a matrix:
− one row per line of code,
− one column per input workload.

 Cluster rows based on linear correlation.
 Fit rows to a power law.
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Running Example: bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3:  int j=i+1;
4:  while (j<n) {
5:   if (arr[i] > arr[j]) 
6:    swap(&arr[i], &arr[j]);
7:   j++; }
8:  ++i; } }  
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Cost Workload1

Line1 1

Line2 61
...
Line5 1770
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance, 
Making a Matrix
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Cost Work(load)1 Work2

Line1 1 1

Line2 61 201
...
Line5 1770 19900
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance, 
Making a Matrix
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Cost Work1 Work2 ... Work60

Line1 1 1 ...     1

Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

− Run workloads and measure performance.

− Record the results for each workload as a column of the matrix.

Measure Performance, 
Making a Matrix
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Problem 1: Too Many Lines of Code

 Leads to too many results to look at
− Observation: Many lines vary together
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Solution 1: Clusters,
Subsets of Correlated Lines of Code
 Greedily assign lines of code  to all clusters 

whose cluster rep  they fit with R2 > 0.98
 Lines of code that don't fit any cluster rep 

become new cluster reps 
 Initial cluster rep is the input size
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Empirical Fact: Clustering Works

 Order of magnitude less clusters than blocks
 Furthermore there are few “costly” clusters

− a cluster is “costly” if it accounts for more than 
2% of total performance on any workload
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Running Example:
Clusters for bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3:  int j=i+1;
4:  while (j<n) {
5:   if (arr[i] > arr[j]) 
6:    swap(&arr[i], &arr[j]);
7:   j++; }
8:  ++i; } }  
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From Now on, Think Clusters
Rather Than Lines of Code

 Use the clusters as “abstract lines of code”
− from now on, we just call them lines of code
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Problem 2: How Do We Get a 
Trend From a Bunch O’Dots?

What The Heck Is This Trend ?!
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Cost Work1 Work2 ... Work60

Line1 1 1 ...     1

Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

Look for performance trends: 
 each row records work done by each line of code

Solution 2: Fit the Matrix 
Rows to a Power Law
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Cost Work1 Work2 ... Work60

InputSize 60 200 ... 60000

Line1 1 1 ...     1
Line2 61 201 ... 60001
...
Line5 1770 19900 ... 1.79997e9
...

Look for performance trends: 
 each row records work done by each block
 with respect to user-specified input size

...Versus a User-Defined 
Notion of Input Size
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Again, Model Performance as a 
Powerlaw of Input Size

(Cost) = a * (Input Size) b

 Low dimensional
− gives us high confidence for less data

 Easy to interpret
 Captures the high-order term

− logarithmic factors are quite small in practice
− polynomials converge to high order term
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Handy Fact:
Powerlaws are Lines 

on Log-Log Axes

log (Cost) = log a + b * log (Input Size) ‏
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Demo
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Running Example:
trend-prof results for bsort 
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bsort: Plots

 Best-fit Plot
− x: log(size) ‏
− y: log(swap cluster) ‏

 line slope = 1.93

 Residuals Plot
− y: residual
− lack of randomness 

means the model 
missed something
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 trend-prof flow chart

run workloads

input size

workloads

matrix

cluster

matrix of cluster totals

powerlaw fitplots of trends

            user                       trend-prof
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Results
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Confirmed Linear Scaling

 Ukkonen's Algorithm (maximus) ‏
− Theoretical Complexity: O(n) ‏
− Empirical Complexity:  ~ n

Input Size
Cost

25



Empirical Complexity: Andersen's

 Andersen's points-to analysis (banshee) ‏
− Theoretical Complexity: O(n3) ‏
− Empirical Complexity:  ~ n1.98

log(Input Size)‏

log(Cost)‏

Slope = 1.98
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Empirical Complexity: GLR

 GLR C++ parser (elkhound / elsa) ‏
− Theoretical Complexity: O(n3) ‏
− Empirical Complexity:  ~n1.13

log(Cost)‏
log(Input Size)‏

Slope = 1.13
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How well do you know your code?

 Output routines (maximus) ‏
− Theoretical Complexity: O(n)?
− Empirical Complexity:  ~ n1.30

log(Cost)‏
log(Input Size)‏

Slope = 1.30
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Algorithms in context

 The linear-time list append in banshee's 
parser is a bug

Slope = 1.21

R2 = 0.95 
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Algorithms in Context

 The linear-time list append in Elsa's name 
lookup code is not a bug

R2 = 0.65 
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Results Recap

 Confirmed linear scaling (maximus) ‏
 Empirical scalability (Andersen's, GLR) ‏
 Unexpected behavior (maximus) ‏
 Algorithms in context (elsa, banshee) ‏

− found a performance bug in banshee's parser
− found similar situation, but no bug in elsa
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Technical Contributions of Part 1

 Built trend-prof
− a tool to measure empirical computational 

complexity

 Discovered the following empirical facts
− programs have few clusters, fewer costly ones
− powerlaw fits work well

 Showed that powerlaw fits of basic block 
counts reveal general trends
− low-dimension but still nice precision
− plots reveal the subtleties of actual computation...
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Conclusion

 Semi-automatically empirically modeling 
performance trends as a function of input 
size works
− examining the matrix rows instead of columns 

yields insight into scalability
− control flow suggests precise models that 

sometimes improve upon direct models

 Comparing these models to expectation finds 
bugs or finds properties of the data

 Trend-prof belongs in the toolbox for 
performance / scalability testing
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Questions?

Code

trend-prof.tigris.org
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