Measuring Empirical Computational
Complexity Using trend-prof

1e+08 f

166080 SIOpe =1.98

100 |

10 F

log(Cost) 1 :

6.3191e-89 * x ** 1,98130]
10000 100000 1e+06 1e+87 1e+08

log(Input Size) >

Simon Fredrick Vicente Goldsmith

Daniel Shawcross Wilkerson
Alex Aiken

Algorithmic Scalability
IS a Timeless Concern

 No matter your resources, an unnecessary
super-linearity can eat them all.

- That is, never send a quadratic algorithm to do a
linear algorithm's job.

 We want an understanding of performance
that has

- the concreteness of empiricism on a realistic
set of workloads for a real program,

- and the generality of a trend without the
difficulty of theoretical analysis.

Empirical Asymptotic.: Combining
the Strength of Two Approaches

Consider performance of Insertion Sort
 NOT: Theoretical . analysis

- worst case ©(n?)

- best case O(n)
- expected case depends on input distribution

« NOT: Empirical . gprof
- e.qg., 2% of total time
« BUT: Empirical . trend-prof

- empirically scales as, e.g., n'2

Core |ldea

* For each line of the program
e Relate cost to input size

11606066
160660 [
96600
800608
700800
60000
50000
408000
30000
20000
(:()E;t 168660
2]

block 2 observations (O |
trend ,

8 10606 26060 306000 46060 50000 60060 706006 80060 90606 10600¢

INnput Size ——

Our Method

 Measure performance, making a matrix:

- one row per line of code,
- one column per input workload.

 Cluster rows based on linear correlation.
* Fit rows to a power law.

1:
2
3

O J O Ul b

Running Example: bsort

vold bsort (int n,

int 1=0;

while (1<n)
int J=1+1;

while
1f

++1;

J

(J<n)

{

{

(arr[1]
swap (&arr[i], &arr([3j]);
J++;

J

J

int *arr) {

> arr[J])

Measure Performance,
Making a Matrix

- Run workloads and measure performance.

- Record the results for each workload as a column of the matrix.

Cost Workload,
Linel 1
Line2 ol

Line5 1770

Measure Performance,
Making a Matrix

- Run workloads and measure performance.

- Record the results for each workload as a column of the matrix.

Cost Work (load) Work,
Linel 1 1

Line2 ol 201

Line5 1770 19900

Measure Performance,
Making a Matrix

- Run workloads and measure performance.

- Record the results for each workload as a column of the matrix.

Cost Work, Work, ... Work
Lime1 1 1 ... 1
Lime2 ol 201 ... 00001

Line, 1770 19900 ... [1.79997e9

Problem 1: Too Many Lines of Code

Program Basic Blocks
bzip 1032
maximus 1220
elsa 33647
banshee 13308

* Leads to too many results to look at
- Observation: Many lines vary together

Solution 1: Clusters,
Subsets of Correlated Lines of Code

* Greedily assign lines of codé to all clusters
whose cluster rep they fit with R? > 0.98

* Lines of code that don't fit any cluster rep
become new cluster reps

* Initial cluster rep is the input size

0

11

Empirical Fact: Clustering Works

Basic Costly
Program |Blocks | Clusters | Clusters
bzip 1032 23 10
maximus 1220 13 9
elsa 33647 1489 30
banshee | 13308 859 26

e Order of magnitude less clusters than blocks
* Furthermore there are few “costly” clusters

- a cluster is “costly” if it accounts for more than
2% of total performance on any workload

O J oYUl xWN K

Running Example:
Clusters for bsort

vold bsort (int n, int *arr)

: 1int 1=0;
: while (1<n) {

int jJj=i+1;

: Swap!&arr‘l‘, &arr‘j‘!;

F

13

From Now on, Think Clusters
Rather Than Lines of Code

 Use the clusters as “abstract lines of code”

- from now on, we just call them lines of code

14

Problem 2: How Do We Get a
Trend From a Bunch O’Dots?

1le+89 ¢

1e+08 ;
le+87 ;
1e+06 ;
160000 ;

i
1660806 [
I

observations (O -
4 powelr law fit
‘“for a top clu§ter

168608 O

196 v v 7 . .
160 1600 16660 160000 1e+86 1e+87

What The Heck Is This Trend ?!

15

Solution 2: Fit the Matrix
Rows to a Power Law

Look for performance trends:
« each row records work done by each line of code

Cost Work, Work, .. Work,,
Linel 1 1 ... 1
Line2 ol 201 ... 00001

Line5 1770 19900 ... 1.79997e9

16

...\Versus a User-Defined
Notion of Input Size

Look for performance trends:
e each row records work done by each block
» with respect to user-specified input size

Cost Work, Work, .. Work
InputSize 60 200 ... 60000
Line, 1 1 ... 1
Line, o1 201 ... 60001

Line, 1770 19900 ... 1.79997e9

17

Again, Model Performance as a
Powerlaw of Input Size

(Cost) = a * (Input Size) "

* Low dimensional
- gives us high confidence for less data
* Easy to interpret

e Captures the high-order term

- logarithmic factors are quite small in practice
- polynomials converge to high order term

18

le+18

1e+88

1e+86

16000

160

log (Cost) = lo
g()

"Handy Fact ,/
hes

Powerlaws are |
on Log- -/‘ Xes

"/
o /
&

/

Y

© a+b*log Input Size)

x—

2 % g % log(r) me——

3 % R¥ED = 10y m—
4 % RERD w—
H % x#%3
1 1 1

168

" " A .l L " P |
160 1660 16660

166000 1e+86

19

Demo

20

Running Example:

trend-prof results for bsort

Max Cost
in billions of
basic block
executions

1.00

2.5

Cluster
Name

Swaps

Cluster Total

as a function of
Input Size

30n 1.93

RZ
O=bad
1=good

0.996

<1

Size

29 n 1.00

1.00

21

bsort: Plots

e ey residuals O
1e+08 : l O
1e+07 : 0 50" °°
| 8 ¥ ©°
- ws} O -
16008 - swaps O - O
» Best-fit Plot * Residuals Plot
- X: log(size) - y: residual
- y: log(swap cluster) - lack of randomness
_ _ means the model
* line slope = 1.93 missed something

22

trend-prof flow chart

@rkloam
i _run workloads /
)
Gput SIB | matrix |
' !
N\ cluster [~
: v
i [matrix of cluster totals |
y

@S of trenB«\ \ powerlaw fit /

user trend -prof

23

Results

Confirmed Linear Scaling

2.5e+86

A 2e+86

1,.5e+86 [

1e+86

500000

9 1 1 1 1 1 1 1 1
CO St 8 500000 1e+86 1.5e+06 2e+06 2,5e+06 3e+06 3,5e+06 4e+06 4,5e+0

Input Size >

* Ukkonen's Algorithm (maximus)

- Theoretical Complexity: O(n)
- Empirical Complexity: ~n

25

Empirical Comp

1e+88 |

log(Cost)

1e+07 |
1e+06 |
100008 |
10000 |
1000 |
100 -

10 |

.
10008

T T TrrrT

cluster with highest exponent
6.3}918-99 * X O*% ?.98139

O

PR T T T W 1

166000

log(Input Size)

1e+086 1e+087

>

lexity: Andersen’s

Slope = 1.98

1e+08

* Andersen's points-to analysis (banshee)

- Theoretical Complexity: 0(n?)
- Empirical Complexity: ~ n-98

26

Empirical Complexity: GLR

1e+87 S'Ope =1.13

le+86

186600

168660

observations
power law f lit‘.

1998 " i " " " o | " " " " i "
log(Cost) 1 10 100 1000 10000 100000 1e+86

log(Input Size) >

* GLR C++ parser (elkhound / elsa)

- Theoretical Complexity: 0(n?)
- Empirical Complexity: ~n'13

27

How well do you know your code?

le+l8 —

1e+89 |
1e+08 I
1e+07 |

Slope = 1.30

1e+06 I

100000 |

16800 (.— observations (O 7
. . . power].aul fit

16600 : . .
log(Cost) 160 1608 160080 1606800 1e+86 1e+07

log(Input Size) >

* Output routines (maximus)
- Theoretical Complexity: 0(n)?
- Empirical Complexity: ~ n1-30

28

le+ll ¢

le+10 %
1e+89 %
1e+08 %
le+87 %

- e “ ,,-: 3
1e+86 | l“’&;ﬁ;* cparser/AST,.c 34,1 observations

cparser/AST.c 34,1 best fit
otper cluster fits

O

1660060 e ; — ;
16060 16066806 1e+86 le+87 1e+88

1e+89

Algorithms in context

Slope = 1.21

R2=0.95

* The linear-time list append in banshee's

parser is a bug

29

Algorithms in Context

10109
sos00 |
sevor | R? = 0.65
1o406 |

160600 |

18660

observations (O -
power law fit
TtTfor a top clu:ster

16860 |

160 — Ry) .
1080 1008 10000 100008 1e+86 1e+87

* The linear-time list append in Elsa's name
lookup code is not a bug

30

Results Recap

* Confirmed linear scaling (maximus)
* Empirical scalability (Andersen's, GLR)
* Unexpected behavior (maximus)

* Algorithms in context (elsa, banshee)

- found a performance bug in banshee's parser
- found similar situation, but no bug in elsa

31

Technical Contributions of Part 1

e Built trend-prof

- a tool to measure empirical computational
complexity

» Discovered the following empirical facts
- programs have few clusters, fewer costly ones
- powerlaw fits work well

» Showed that powerlaw fits of basic block
counts reveal general trends

- low-dimension but still nice precision
- plots reveal the subtleties of actual computation...

32

Conclusion

e Semi-automatically empirically modeling
performance trends as a function of input
size works

- examining the matrix rows instead of columns
yields insight into scalability

- control flow suggests precise models that
sometimes improve upon direct models

 Comparing these models to expectation finds
bugs or finds properties of the data

* Trend-prof belongs in the toolbox for
performance / scalability testing

33

Thanks

 To Alex Aiken for all the stuff advisors do

 To Daniel Wilkerson for wonderful
suggestions for improving this and other talks
as well as our collaboration

34

Questions?

Code

trend-prof.tigris.org

Publications

S. F. Goldsmith, A. S. Aiken, D. S. Wilkerson. Measuring
Empirical Computational Complexity. FSE 2007.

S. F. Goldsmith. Measuring Emprical Computational
Complexity. PhD dissertation. UC Berkeley. 2009.

35

