
Measuring Empirical
Computational Complexity

with trend-prof

Simon Goldsmith
Alex Aiken

Daniel Wilkerson

FSE 2007
September 7, 2007

Understanding Performance

● Existing tools
– theoretical asymptotic complexity

● e.g., big-O bounds, big-Θ bounds

– empirical profiling
● e.g., gprof

● We propose an “empirical asymptotic” tool
– trend-prof

How does my code scale?

● Consider insertion sort
● Theoretical Asymptotic Complexity

– worst case Θ(n^2)

– best case Θ(n)

– expected case depends on input distribution

● Empirical Profiling
– e.g., 2% of total time

● trend-prof
– empirically scales as, e.g., n^1.2

trend-prof measures
workloads

● Run workloads and measure performance

Workloads: w
1

Block 1: 1
Block 2: 61
...
Block 5: 1770
...

trend-prof

● Run workloads and measure performance

Workloads: w
1

w
2

Block 1: 1 1
Block 2: 61 201
...
Block 5: 1770 19900
...

trend-prof

● Run workloads and measure performance

Workloads: w
1

w
2

... w
60

Block 1: 1 1 ... 1
Block 2: 61 201 ... 60001
...
Block 5: 1770 19900 ... 1.79997e9
...

trend-prof

● Look for performance trends in each block

Workloads: w
1

w
2

... w
60

Block 1: 1 1 ... 1
Block 2: 61 201 ... 60001
...
Block 5: 1770 19900 ... 1.79997e9
...

trend-prof: Input Size

● Look for performance trends in each block
– with respect to user-specified input size

Workloads: w
1

w
2

... w
60

Input Size: 60 200 ... 60000

Block 1: 1 1 ... 1
Block 2: 61 201 ... 60001
...
Block 5: 1770 19900 ... 1.79997e9
...

Core Idea

● Relate performance of each basic block to
input size

Input Size

Performance
(Cost)

Uses of trend-prof

● Measure the performance trend an
implementation exhibits on realistic
workloads
– and compare that to your expectations

● Identify locations that scale badly
– may perform ok on smaller workloads, but

dominate larger workloads

Example: bsort

void bsort(int n, int *arr) {

1: int i=0;

2: while (i<n) { // O(n2)
3: int j=i+1;

4: while (j<n) { // O(n2)
5: if (arr[i] > arr[j])
6: swap(&arr[i], &arr[j]);
7: j++; }
8: ++i; } }

Challenges

● How to relate performance to input size?
● How to summarize a large amount of data?

Problem: Too Many Basic Blocks

Program Basic Blocks

1032

1220

elsa 33647

banshee 13308

bzip

maximus

● Leads to too many results to look at
– Observation: Many basic blocks vary together

Summarize with Clusters

● Group basic blocks with similar performance
into the same cluster

Empirical Fact: Clustering Works

Program Clusters

1032 23 10

1220 13 9

elsa 33647 1489 30

banshee 13308 859 26

Basic
Blocks

Costly
Clusters

bzip

maximus

● Furthermore most clusters are small and
cheap
– a cluster is “costly” if it accounts for more than

2% of total performance on any workload

Clusters for bsort

void bsort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3: int j=i+1;
4: while (j<n) {
5: if (arr[i] > arr[j])
6: swap(&arr[i], &arr[j]);
7: j++; }
8: ++i; } }

Cluster Total as Matrix Row

● Relate total executions of each cluster to
input size

Relate Performance to Input Size

● Powerlaw regression is great
● (Cost) = a (Input Size)b

– Linear regression on (log Input Size, log Cost)

● Captures the high-order term
– logarithmic factors don't matter in practice
– polynomials converge to high order term

Powerlaw fit

Output: bsort

max cost
(billions of
basic block
executions)

Cluster
Cluster Total as a
function of input

size
R2

11 Compares 3.1 n2.00 1.00

2.5 Swaps 3.0 n1.93 0.996

< 1 Size 22 n1.00 1.00

bsort: Plots

● log(size) vs
log(swaps cluster)

● slope = 1.93

● residuals plot
– they are small
– they are not random

trend-prof

run workloads

input size

workloads

matrix

cluster

matrix of cluster totals

powerlaw fit

scatter plots
powerlaw fits

residuals plots

user trend-prof

Results

Confirmed Linear Scaling

● Ukkonen's Algorithm (maximus)
– Theoretical Complexity: O(n)
– Empirical Complexity: ~ n

Input Size
Cost

Empirical Complexity: Andersen's

● Andersen's points-to analysis (banshee)
– Theoretical Complexity: O(n3)
– Empirical Complexity: ~ n1.98

log(Input Size)

log(Cost)

Slope = 1.98

Empirical Complexity: GLR

● GLR C++ parser (elkhound / elsa)
– Theoretical Complexity: O(n3)
– Empirical Complexity: ~n1.13

log(Cost)

log(Input Size)

Slope = 1.13

How well do you know your code?

● Output routines (maximus)
– Theoretical Complexity: O(n)?
– Empirical Complexity: ~ n1.30

log(Cost)

log(Input Size)

Slope = 1.30

Algorithms in context

● The linear-time list append in banshee's
parser is a bug

Slope = 1.21

R2 = 0.95

Algorithms in Context

● The linear time list append in elsa's name
lookup code is not a bug

R2 = 0.65

Results Recap

● Confirmed linear scaling (maximus)
● Empirical scalability (Andersen's, GLR)
● Unexpected behavior (maximus)
● Algorithms in context (elsa, banshee)

– found a performance bug in banshee's parser

Technical Contributions

● trend-prof

– a tool to measure empirical computational
complexity

● Discovery of the following empirical facts
– programs have few costly clusters
– powerlaw fits work well

Conclusion

● trend-prof models total basic block count
of a cluster as a powerlaw function (y = axb)
of user-specified input size
– enables thorough comparison of your

expectations about scalability to empirical reality
– finds locations that scale badly

download trend-prof at
http://trend-prof.tigris.org

