
Simon Goldsmith
Robert O'Callahan

Alex Aiken

OOPSLA 2005
October 20, 2005

Partiqle: Relational Queries Over
Program Traces

Does doTransaction call sleep?

public class DB {
void doTransaction() {
(new B()).y();

} }
public class B {
void y() { sleep(); }
void sleep() {}

}

● Obviously yes for this example

● How might one find out?

public class DB {
public static boolean active = false;
void doTransaction() {
active = true;
(new B()).y();
active = false;

} }
public class B {
void y() { sleep(); }
void sleep() {
if (DB.active) {
println("call to sleep()!");

}
} }

Manual Instrumentation?

Failings of Manual Instrumentation

● Easy to get wrong
– recursion, exceptions, threads

● Managing lots of data
● Non-local

– hard to maintain

More Generally...

● How does one answer questions about
program behavior?

● For example
– Does doTransaction call sleep?
– Does my program leak resources?

– Does it use the API correctly?

– Does it pass a null pointer to method foo?

Solution

a query language over program traces

Terminology

● An event is a method call, object allocation,
etc.

● A program trace is a sequence of time-
stamped events that happen during a given
program's execution.

● A query is an SQL query against the
program trace regarded as a table of events.

Artifacts

● Program Trace Query Language (PTQL)
– a query language over program traces

– subset of SQL => familiar, declarative

● Partiqle compiler
– compiles PTQL query to optimized
instrumentation of Java bytecode

– instrumentation outputs query results as they
become available

Partiqle

Java BytecodePTQL Query

JVM

Instrumented Bytecode

Query Results Program Output

Does doTransaction call sleep?

SELECT sleep.backTrace
FROM MethodInvoc('DB.doTransaction') trans
JOIN MethodInvoc('B.sleep') sleep
ON trans.thread = sleep.thread
AND trans.startTime < sleep.startTime
AND sleep.startTime < trans.endTime

Advantages

● Partiqle manages the data
● Partiqle instrumentation is general

– it works in the presence of threads, exceptions,
recursion

● You write a declarative PTQL query
– not a new dynamic analysis tool

– not manual instrumentation

Program Trace Query Language
(PTQL)

● Regard program trace as tables:
– MethodInvoc
– ObjectAlloc

● Event happens => record in table
– A call to foo() adds a record to MethodInvoc

● PTQL = SQL query over this schema

Example PTQL Query I

● What methods does method foo call?
SELECT m.*
FROM MethodInvoc('foo') foo
JOIN MethodInvoc m
ON m.thread = foo.thread
AND foo.startTime < m.startTime
AND m.endTime < foo.endTime

time

thread 7 foo
m

1 2 3 4

Example PTQL Query II

● Show streams closed >1s after the last read/write
SELECT close.*

FROM MethodInvoc('read'|'write') rw
JOIN MethodInvoc('close') close
ON rw.receiver = close.receiver

AND close.endTime > rw.endTime + 1000
ANTIJOIN MethodInvoc nrw('read'|'write')

ON nrw.receiver = rw.receiver
AND rw.endTime < nrw.endTime
AND nrw.endTime < close.endTime

Example PTQL Query III*

● Look for SQL injection attacks
SELECT tainted.result

FROM MethodInvoc('HttpServletRequest.getParameter') tainted

JOIN MethodInvoc('Connection.execute') exec

ON tainted.result = exec.param1

Example PTQL Query III*

● Ok if you check input before calling execute
SELECT tainted.result

FROM MethodInvoc('HttpServletRequest.getParameter') tainted

JOIN MethodInvoc('Connection.execute') exec

ON tainted.result = exec.param1

ANTIJOIN MethodInvoc('Util.inputOk') check
ON check.param1 = tainted.result
AND check.result = true
AND check.endTime < exec.startTime

Partiqle: Overview

● Compiles PTQL query to instrumentation
– Record “interesting” events in runtime tables

● Those that might contribute to query results

– Search tables for query results
● Sets of events that match the query

Does doTransaction call sleep?

SELECT sleep.backTrace
FROM MethodInvoc('DB.doTransaction') trans
JOIN MethodInvoc('B.sleep') sleep
ON trans.thread = sleep.thread
AND trans.startTime < sleep.startTime
AND sleep.startTime < trans.endTime

● Query result = 2 events
– a call to doTransaction
– and a call to sleep

Recording Events

➢ Instrument code that may generate events
...

FROM MethodInvoc('DB.doTransaction') trans

...

void doTransaction() {
b.y();

}

QueryQuery

CodeCode

Recording Events

➢ Instrument code that may generate events
➢ to add events records to the runtime tables

void doTransaction() {
trans_Record r;
synchronized(partiqleLock) {

r = trans_Table.add(getTime(), getThread());
} try {

b.y(); // method body
} finally { synchronized(partiqleLock) {

r.setEndTime(getTime());
} }

}

Timing

➢ In what order must the events happen?
...

trans.startTime < sleep.startTime
AND sleep.startTime < trans.endTime

QueryQuery

time

thread 4 doTransaction
sleep

1 2 3 4

Query Evaluation

➢ Any event that may be last triggers query
evaluation

void sleep() {

// method body

}

void sleep() {

queryEval(getThread(),

getTime());

// method body

}

Query Evaluation

void queryEval(int threadId, long now) {
synchronized(partiqleLock) {

foreach r in trans_Table {
if (threadId == r.threadId

&& r.startTime < now
&& r.endTime > now) {

print getBackTrace();
} } } }

➢ Query evaluation searches runtime tables for
matching events

Optimization

➢ Finished calls to doTransaction cannot
contribute to query results

void doTransaction() {
trans_Record r;
synchronized(partiqleLock) {

r = trans_Table.add(getTime(), getThread());
} try {

b.y(); // method body
} finally { synchronized(partiqleLock) {

r.setEndTime(getTime());
trans_Table.delete(r);

} }
}

Optimization

➢ Finished calls to doTransaction cannot
contribute to query results

void doTransaction() {
trans_Record r;
synchronized(partiqleLock) {

r = trans_Table.add(getThread());
} try {

b.y(); // method body
} finally { synchronized(partiqleLock) {

trans_Table.delete(r);
} }

}

Optimization

void queryEval(int threadId, long now) {
synchronized(partiqleLock) {

foreach r in trans_Table {
if (threadId == r.threadId

&& r.startTime < now
&& r.endTime > now) {

print getBackTrace();
} } } }

➢ Finished calls to doTransaction cannot
contribute to query results

Optimization

void queryEval(int threadId) {
synchronized(partiqleLock) {

foreach r in trans_Table {
if (threadId == r.threadId {
print getBackTrace();

} } } }

➢ Finished calls to doTransaction cannot
contribute to query results

Runtime Table for trans_Table

➢ Store only essential fields
– just thread

➢ Support only necessary operations
– add(thread), delete(thread), iterate(thread)

➢ Pick reasonable data structure
– map from thread to an integer counter

● add => increment
● delete => decrement

Partiqle: Compilation Summary

● Generate specialized data structures to store
event records

● Instrumentation to create and store event
records

● Generate query evaluation code

Experiments: Queries

● DelayedClose
– Show streams closed >1s after the last read/write
– looked at Tomcat-specific stream class

● StringConcats
– No s=s+“stuff” many times in a row

● HashCode
– An object's hashCode does not change
– Important if it is in a Hashtable

Experiments: Programs

● Ran queries on
– Apache Tomcat (web server / Java servlets) (17k
methods)

– SpecJVM98 benchmarks

– Some microbenchmarks

● Measured slowdown and memory footprint

db com-
press

lisp js-
cheme

mips mtrt mpeg jack jess javac tomcat
0

1

2

3

4

5

6

7

8

9

10

Time Overhead

HashCode StringConcats DelayedClose

T
im
es
S
lo
w
do
w
n

db com-
press

lisp js-
cheme

mips mtrt mpeg jack jess javac tomcat
0

2

4

6

8

10

12

14

16

18

20

22

24

Memory Overhead

HashCode StringConcats DelayedClose

T
im
es
M
em
or
y

Bugs Found

● Found several performance bugs (string
concats)
– Jack (SpecJVM98 benchmark)

– Apache Tomcat's XML parser

– IBM JDK

● Found correct, but subtle code
– Hash code consistency in Xerces XML parser

Related Work

● Aspect Oriented Programming Languages
– Tracematches (talk before previous talk)

● Other trace-based query engines
– PMMS (Liao & Cohen, 1992)

– PQL (previous talk)

● Program Monitors
– Eagle (Barringer et al., RV 2004)

● DIDUCE / Daikon / Statistical Debugging

Conclusion

PTQL: declarative query language over program
traces

Partiqle: compiles PTQL to Java bytecode
instrumentation

+
answers to questions about program behavior

Thanks!

● Thanks to

– Michael Martin et al. (PQL) and

– Oege de Moor et al. (Tracematches)

for sharing early drafts of their papers

