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Does doTransaction call sleep?

public class DB {
void doTransaction() {
(new B()).y();

} }
public class B {
void y() { sleep(); }
void sleep() {}

}

● Obviously yes for this example

● How might one find out?



public class DB {
public static boolean active = false;
void doTransaction() {
active = true;
(new B()).y();
active = false;

} }
public class B {
void y() { sleep(); }
void sleep() {
if (DB.active) {
println("call to sleep()!");

}
} }

Manual Instrumentation?



Failings of Manual Instrumentation

● Easy to get wrong
– recursion, exceptions, threads

● Managing lots of data
● Non-local

– hard to maintain



More Generally...

● How does one answer questions about
program behavior?

● For example
– Does doTransaction call sleep?
– Does my program leak resources?

– Does it use the API correctly?

– Does it pass a null pointer to method foo?



Solution

a query language over program traces



Terminology

● An event is a method call, object allocation,
etc.

● A program trace is a sequence of time-
stamped events that happen during a given
program's execution.

● A query is an SQL query against the
program trace regarded as a table of events.



Artifacts

● Program Trace Query Language (PTQL)
– a query language over program traces

– subset of SQL => familiar, declarative

● Partiqle compiler
– compiles PTQL query to optimized
instrumentation of Java bytecode

– instrumentation outputs query results as they
become available
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Does doTransaction call sleep?

SELECT sleep.backTrace
FROM MethodInvoc('DB.doTransaction') trans
JOIN MethodInvoc('B.sleep') sleep
ON trans.thread = sleep.thread
AND trans.startTime < sleep.startTime
AND sleep.startTime < trans.endTime



Advantages

● Partiqle manages the data
● Partiqle instrumentation is general

– it works in the presence of threads, exceptions,
recursion

● You write a declarative PTQL query
– not a new dynamic analysis tool

– not manual instrumentation



Program Trace Query Language
(PTQL)

● Regard program trace as tables:
– MethodInvoc
– ObjectAlloc

● Event happens => record in table
– A call to foo() adds a record to MethodInvoc

● PTQL = SQL query over this schema



Example PTQL Query I

● What methods does method foo call?
SELECT m.*
FROM MethodInvoc('foo') foo
JOIN MethodInvoc m
ON m.thread = foo.thread
AND foo.startTime < m.startTime
AND m.endTime < foo.endTime

time

thread 7 foo
m

1 2 3 4



Example PTQL Query II

● Show streams closed >1s after the last read/write
SELECT close.*

FROM MethodInvoc('read'|'write') rw
JOIN MethodInvoc('close') close
ON rw.receiver = close.receiver

AND close.endTime > rw.endTime + 1000
ANTIJOIN MethodInvoc nrw('read'|'write')

ON nrw.receiver = rw.receiver
AND rw.endTime < nrw.endTime
AND nrw.endTime < close.endTime



Example PTQL Query III*

● Look for SQL injection attacks
SELECT tainted.result

FROM MethodInvoc('HttpServletRequest.getParameter') tainted

JOIN MethodInvoc('Connection.execute') exec

ON tainted.result = exec.param1



Example PTQL Query III*

● Ok if you check input before calling execute
SELECT tainted.result

FROM MethodInvoc('HttpServletRequest.getParameter') tainted

JOIN MethodInvoc('Connection.execute') exec

ON tainted.result = exec.param1

ANTIJOIN MethodInvoc('Util.inputOk') check
ON check.param1 = tainted.result
AND check.result = true
AND check.endTime < exec.startTime



Partiqle: Overview

● Compiles PTQL query to instrumentation
– Record “interesting” events in runtime tables

● Those that might contribute to query results

– Search tables for query results
● Sets of events that match the query



Does doTransaction call sleep?

SELECT sleep.backTrace
FROM MethodInvoc('DB.doTransaction') trans
JOIN MethodInvoc('B.sleep') sleep
ON trans.thread = sleep.thread
AND trans.startTime < sleep.startTime
AND sleep.startTime < trans.endTime

● Query result = 2 events
– a call to doTransaction
– and a call to sleep



Recording Events

➢ Instrument code that may generate events
...

FROM MethodInvoc('DB.doTransaction') trans

...

void doTransaction() {
b.y();

}

QueryQuery

CodeCode



Recording Events

➢ Instrument code that may generate events
➢ to add events records to the runtime tables

void doTransaction() {
trans_Record r;
synchronized(partiqleLock) {

r = trans_Table.add(getTime(), getThread());
} try {

b.y(); // method body
} finally { synchronized(partiqleLock) {

r.setEndTime(getTime());
} }

}



Timing

➢ In what order must the events happen?
...

trans.startTime < sleep.startTime
AND sleep.startTime < trans.endTime

QueryQuery

time

thread 4 doTransaction
sleep

1 2 3 4



Query Evaluation

➢ Any event that may be last triggers query
evaluation

void sleep() {

// method body

}

void sleep() {

queryEval( getThread(),

getTime() );

// method body

}



Query Evaluation

void queryEval(int threadId, long now) {
synchronized(partiqleLock) {

foreach r in trans_Table {
if ( threadId == r.threadId

&& r.startTime < now
&& r.endTime > now ) {

print getBackTrace();
} } } }

➢ Query evaluation searches runtime tables for
matching events



Optimization

➢ Finished calls to doTransaction cannot
contribute to query results

void doTransaction() {
trans_Record r;
synchronized(partiqleLock) {

r = trans_Table.add(getTime(), getThread());
} try {

b.y(); // method body
} finally { synchronized(partiqleLock) {

r.setEndTime(getTime());
trans_Table.delete(r);

} }
}



Optimization

➢ Finished calls to doTransaction cannot
contribute to query results

void doTransaction() {
trans_Record r;
synchronized(partiqleLock) {

r = trans_Table.add(getThread());
} try {

b.y(); // method body
} finally { synchronized(partiqleLock) {

trans_Table.delete(r);
} }

}



Optimization

void queryEval(int threadId, long now) {
synchronized(partiqleLock) {

foreach r in trans_Table {
if ( threadId == r.threadId

&& r.startTime < now
&& r.endTime > now ) {

print getBackTrace();
} } } }

➢ Finished calls to doTransaction cannot
contribute to query results



Optimization

void queryEval(int threadId) {
synchronized(partiqleLock) {

foreach r in trans_Table {
if ( threadId == r.threadId {
print getBackTrace();

} } } }

➢ Finished calls to doTransaction cannot
contribute to query results



Runtime Table for trans_Table

➢ Store only essential fields
– just thread

➢ Support only necessary operations
– add(thread), delete(thread), iterate(thread)

➢ Pick reasonable data structure
– map from thread to an integer counter

● add => increment
● delete => decrement



Partiqle: Compilation Summary

● Generate specialized data structures to store
event records

● Instrumentation to create and store event
records

● Generate query evaluation code



Experiments: Queries

● DelayedClose
– Show streams closed >1s after the last read/write
– looked at Tomcat-specific stream class

● StringConcats
– No s=s+“stuff” many times in a row

● HashCode
– An object's hashCode does not change
– Important if it is in a Hashtable



Experiments: Programs

● Ran queries on
– Apache Tomcat (web server / Java servlets) (17k
methods)

– SpecJVM98 benchmarks

– Some microbenchmarks

● Measured slowdown and memory footprint
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Bugs Found

● Found several performance bugs (string
concats)
– Jack (SpecJVM98 benchmark)

– Apache Tomcat's XML parser

– IBM JDK

● Found correct, but subtle code
– Hash code consistency in Xerces XML parser



Related Work

● Aspect Oriented Programming Languages
– Tracematches (talk before previous talk)

● Other trace-based query engines
– PMMS (Liao & Cohen, 1992)

– PQL (previous talk)

● Program Monitors
– Eagle (Barringer et al., RV 2004)

● DIDUCE / Daikon / Statistical Debugging



Conclusion

PTQL: declarative query language over program
traces

Partiqle: compiles PTQL to Java bytecode
instrumentation

+
answers to questions about program behavior



Thanks!

● Thanks to

– Michael Martin et al. (PQL) and

– Oege de Moor et al. (Tracematches)

for sharing early drafts of their papers


