
Relational Queries Over Program Traces ∗

Simon Goldsmith†

University of California,
Berkeley

sfg@eecs.berkeley.edu

Robert O’Callahan‡

Novell

rocallahan@novell.com

Alex Aiken
Stanford University

aiken@cs.stanford.edu

ABSTRACT
Instrumenting programs with code to monitor runtime behavior is
a common technique for profiling and debugging. In practice, in-
strumentation is either inserted manually by programmers, or au-
tomatically by specialized tools that monitor particular properties.
We propose Program Trace Query Language (PTQL), a language
based on relational queries over program traces, in which program-
mers can write expressive, declarative queries about program be-
havior. We also describe our compiler, PARTIQLE. Given a PTQL
query and a Java program, PARTIQLE instruments the program to
execute the query on-line. We apply several PTQL queries to a
set of benchmark programs, including the Apache Tomcat Web
server. Our queries reveal significant performance bugs in thejack
SpecJVM98 benchmark, in Tomcat, and in the IBM Java class li-
brary, as well as some correct though uncomfortably subtle code
in the Xerces XML parser. We present performance measurements
demonstrating that our prototype system has usable performance.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Monitors; D.3.2 [Language
Classifications]: Specialized application languages

General Terms
Languages, Performance, Measurement

Keywords
Partiqle, PTQL, program trace query language, relational
∗This research was supported in part by the National Science Foun-
dation under grant numbers NSF CCR-0085949, CCR-0326577,
CCR-0234689, NASA grant number NNA04CI57A, and by Sub-
contract no. PY-1099 to Stanford, from the Dept. of the Air Force,
prime contract no. F33615-00-C-1693. The information presented
here does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.
†Some of this research was conducted while Simon was an em-
ployee of IBM T.J. Watson Research Center.
‡This research was conducted while Robert was an employee of
IBM T.J. Watson Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

1. INTRODUCTION
Dynamic analysis is an important technique for measuring pro-

gram performance and checking program correctness. Full-blown
dynamic analyses are difficult to write and almost certainly not
worth the trouble for small questions. Often, programmers resort
to ad hoc dynamic analysis: inserting extra fields and print state-
ments. This manual instrumentation is labor intensive and makes
code harder to read and maintain.

Consider the following program fragment:

public class DB {
B b;
void doTransaction() {

b.y();
} }
public class B {

void y() {
sleep();

}
void sleep() {}

}

Can methodDB.doTransaction() transitively call method
sleep() ? While the answer to this question is clearly “yes” for
our simple example, understanding the who-calls-whom relation in
a large, object-oriented program is a non-trivial task. A program-
mer might try to answer the question by instrumenting the code
with the lines marked* :

public class DB {
B b;

* public static boolean doTransActive = false;
void doTransaction() {

* doTransActive = true;
b.y();

* doTransActive = false;
} }
public class B {

void y() {
sleep();

}
void sleep() {

* if (DB.doTransActive) {
* System.out.println("call to sleep()!");

} } }

For only five lines of code, this instrumentation adds consider-
able complexity. We have added a new field (doTransActive)
to class DB , which communicates tosleep() the fact that
doTransaction() is executing. Furthermore, we have added
logic to both sleep() and doTransaction() which, without
documentation, is not obviously separate from the primary func-
tion of these methods.

However, this instrumentation is not even correct.
If doTransaction() terminates with an exception,

doTransActive is never unset. IfdoTransaction() is a
recursive function,doTransActive is set to false too soon
(when the first activation ofdoTransaction() returns). The
situation is more complex in a multi-threaded program. Each
thread must track whether it is executingDB.doTransaction()
and care must be taken to avoid data races.

We propose a system for answering such application-specific
questions about program behavior. These questions are asked as
queries in ourProgram Trace Query Language(PTQL), which we
present in Section 2. We also describe our implementation (Sec-
tion 3) and evaluation (Section 4) of PARTIQLE, a tool to compile
a PTQL query into bytecode instrumentation that is injected into a
Java program to execute the query as the program runs.

Using PARTIQLE avoids the problems of manual instrumenta-
tion. Separating queries from programs makes both of them easier
to understand and maintain. Specifying queries in PTQL leaves
details of gathering, storing, and maintaining data as well as is-
sues such as thread safety and recursion to PARTIQLE. The follow-
ing PTQL query asks“Can methodDB.doTransaction() tran-
sitively call methodsleep() ?” :

SELECT doTrans.startTime, sleep.startTime
FROM MethodInvoc(‘DB.doTransaction’) doTrans

JOIN MethodInvoc(‘B.sleep’) sleep
ON doTrans.thread = sleep.thread
AND doTrans.startTime < sleep.startTime
AND sleep.endTime < doTrans.endTime

This PTQL query looks for two method invocations,doTrans
andsleep , wheredoTrans is a method nameddoTransaction
in classDBandsleep is a method namedsleep in classB.1 Fur-
thermore,doTrans andsleep should happen in the same thread
andsleep should happen duringdoTrans .

The contributions of this paper are:

• We introduce PTQL (Section 2), which is similar in spirit
to SQL. With PTQL the user only specifies what data she
wants and not how to gather it. The implementor is free
to choose efficient data representations and query execution
plans. PTQL supports timing constraints as well as data con-
straints among many program events.

• We describe the implementation of PARTIQLE (Section 3)
and several optimizations that reduce the overhead imposed
by PARTIQLE’s instrumentation. We evaluate the effective-
ness of these optimizations in Section 4.4.

• We experimentally demonstrate that the overhead PARTIQLE

imposes is reasonable and that it can find interesting pro-
gram behaviors (Section 4). We use PARTIQLE to run several
queries on 11 real Java programs, including Apache Tom-
cat [2], and report the slowdown and memory footprint. Our
queries reveal significant (and apparently unknown) perfor-
mance bugs in thejackSpecJVM98 [26] benchmark, in Tom-
cat, and in the IBM Java class library, and some uncomfort-
ably clever code in the Xerces XML parser.

1Note that this query uses syntactic sugar defined in Section 2.3.

2. Program Trace Query Language (PTQL)
This section describes PTQL, our SQL-like query language over

program traces. A relational data model for program traces and
an SQL-like language for querying such traces have several advan-
tages:

• Program traces are naturally viewed as sets of timestamped
records. Each record corresponds to a program event where
the record’s fields are properties of that event. Each type of
event is a relation in the PTQL schema.

• Interesting properties of a program’s execution lie in data and
timing relationships among different events (i.e., relational
joins).

• This view allows PTQL to be declarative, thus freeing the
user from specifying how to gather and manage data and
freeing the implementor to choose efficient data representa-
tions and query execution plans. There are many well-known
and successful optimizations for SQL that can aid us in op-
timizing PTQL. Optimization is crucial since many natural
queries produce enormous amounts of data.

Section 2.1 describes the relational schema over which PTQL
interprets queries, Section 2.2 gives a formal semantics of PTQL,
and Section 2.3 provides example queries.

2.1 Data Model: Tables and Fields
For the purposes of this paper, we consider a schema for program

traces with two relations (sets):

• MethodInvoc contains a record2 for each method invoca-
tion that occurs during program execution.

• ObjectAlloc contains a record for each object allocated
during program execution.

The fields defined inMethodInvoc andObjectAlloc are
listed with their types in Figure 1. Fields of typeObjectId con-
tain references to records inObjectAlloc (i.e., anything that the
Java type system could type asObject). Fields of typevariant
may contain values of any type. Fields likeparam1 have type
variant because the type of values that they contain depends on
the method invocation they match and thus cannot be determined
until runtime.

Our data model is rich enough to express useful queries (see Sec-
tion 4). Nonetheless, we designed it with extensibility in mind.
Adding other relations allows PTQL to talk about different sorts
of events like reads or writes to object fields, lock acquires and
releases, and thread start and stop. Adding fields to existing re-
lations allows more inspection of program state when events fire.
Examples include investigation of local variables on method end,
and values of object fields at method start, method end, and object
collection.

2.2 Formal Definition
A query consists of three clauses (see Figure 2): aFROMclause,

a WHEREclause, and aSELECTclause. The identifiers in the
FROMclause give a unique name to each record that participates in
a query. The join conditions,SELECTclause, andWHEREclause
use these names to refer to specific records in a query result.

PTQL is a subset of SQL. The difference between PTQL and
SQL is in the data model, in particular PTQL’s relational schema

2Alternately, we could use the database term “tuple” instead of
“record”; we use the terms interchangeably.

 SELECT x1.d1, . . . ,xm.dm
FROM f
WHERE w1 AND. . .ANDwk

Σ

=
{
〈r(x1)(d1), . . . , r(xm)(dm)〉

∣∣ r ∈ [[f]]Σ and for all j ∈ {1, . . . ,k} , r |= w j
}

(1)

[x 7→ σ] (y) = if x = y thenσ else⊥ (2)

(r1⊕ r2)(x) = if r1(x) 6=⊥ thenr1(x) elser2(x) (3)

r |= x1.d1 < x2.d2 +n iff r(x1)(d1) < r(x2)(d2)+n (4)

[[MethodInvoc x]]Σ = {[x 7→ σ] | σ ∈ Σ andσ aMethodInvoc event} (5)

[[ObjectAlloc x]]Σ = {[x 7→ σ] | σ ∈ Σ andσ aObjectAlloc event} (6)

[[f1 JOIN f2 ONw]]Σ = {r1⊕ r2 | r1 ∈ [[f1]]Σ andr2 ∈ [[f2]]Σ andr1⊕ r2 |= w} (7)

[[f1 LEFT ANTIJOIN f2 ONw]]Σ = {r1 | r1 ∈ [[f1]]Σ and∀r2 ∈ [[f2]]Σ, r1⊕ r2 6|= w} (8)

Figure 3: Semantics of PTQL Query on Program TraceΣ.

Fields ofMethodInvoc

startTime : long wall clock timestamp for the start
endTime : long wall clock timestamp for the end
mname: string name of the method
declClass : string class that declares the method
implClass : string class that implements the method
receiver : ObjectId this parameter
thread : ObjectId thread in which the method

is invoked
result : variant value returned by the method
param1 , param2 ,

. . . : variant values for the actual parameters

Fields ofObjectAlloc

startTime : long wall clock timestamp for allocation
endTime : long wall clock timestamp for collection
thread : ObjectId thread in which the object is allocated
type : string class name of the object’s runtime type
obj : ObjectId the object

Figure 1: Fields ofMethodInvoc and ObjectAlloc .

〈query〉 ::= SELECT〈select〉 [, 〈select〉]*
FROM 〈from〉
WHERE〈conj〉

〈select〉 ::= identifier.field
〈from〉 ::= 〈relation〉 identifier

| 〈from〉 JOIN 〈from〉 ON 〈conj〉
| 〈from〉 LEFT ANTIJOIN 〈from〉 ON 〈conj〉

〈conj〉 ::= 〈pred〉 [AND〈pred〉]*
〈pred〉 ::= identifier.field 〈op〉 identifier.field

| identifier.field 〈op〉 identifier.field+long
| identifier.field= ‘string’
| identifier.field IN {‘string’ [, ‘ string’]+}
| identifier.field instanceof ‘string’
| identifier.fieldnotinstanceof ‘string’

〈relation〉 ::= MethodInvoc | ObjectAlloc
〈op〉 ::= < | = | != | >

Figure 2: Syntax of Query Language.

over program traces. Join and antijoin in PTQL have the same se-
mantics as in SQL.3 Informally, the join of setsA andB on predi-
catep is the set of records inA×B for which p holds. The result of
A left antijoined withB on predicatep is the set of recordsa∈A for
which there is no recordb∈ B such that〈a,b〉 satisfiesp. Adding
semijoin and outer join to PTQL is easy in the sense that SQL al-
ready defines their semantics. SQL style aggregation primitives
(GROUP BY, DISTINCT) are also a natural extension.

Figure 3 gives the semantics of a PTQL query on a program trace
Σ. A program trace is a set of events; each eventσ ∈ Σ corresponds
to either a record fromMethodInvoc or ObjectAlloc . For
convenience in defining the semantics, we treat events from the
program trace as mappings from field names (as given in Figure 1)
to values for the fields.

In Equation 1 of Figure 3, the set of records specified by the
FROMclause f is [[f]]Σ. Each recordr in this set is a map from
identifiers in theFROMclause to events in the program trace; Equa-
tion 2 defines these maps. Equation 3 shows how join combines
two such mappings. For instance, by Equation 5 the clauseFROM
MethodInvoc x specifies a set of mappings each of which mapsx
to a differentMethodInvoc recordσ ∈ Σ. Each candidate record
r must satisfy the predicatesw j in theWHEREclause, that isr |= w j .
Each such record is transformed into a query result by projecting
the fields requested by theSELECTclause, as inr(xi)(di).

Equation 4 shows the resolution of one predicate; the rule re-
solves position and field names to values and checks the predi-
cate. Rules for the other predicates are similar but not shown. We
define the comparison operators so that fields with incompatible
types are not equal, greater, nor less than each other and fields of
type ObjectId are neither less than nor greater than each other.
If the field x.paramI of “MethodInvoc x” is used in a query,
only invocations of methods with at leastI parameters can match
x . Similarly, use ofx.result means only methods whose re-
turn type is notvoid can matchx and use ofx.receiver means
only non-static methods can matchx . The instanceof opera-
tor allows comparisons behaves likeinstanceof in Java. The
notinstanceof operator is the negation ofinstanceof . The
instanceof andnotinstanceof operators are defined only on
fields of typeObjectId .

Equation 7 defines joins. The mappings for joined sets
combine (via Equation 3) to form a new mapping that re-
solves names from both sets. Only records that satisfy the
join condition are kept. Consider for instance a mapr in
[[MethodInvoc x JOIN ObjectAlloc y ON x.receiver = y.obj]]Σ.

3Some variants of SQL define antijoin, left antijoin, and right anti-
join. PTQL only defines left antijoins.

Each suchr is a combination of maps (analogous to a concatenation
of records)r = r1⊕ r2 such thatr1 ∈ [[MethodInvoc x]]Σ andr2 ∈
[[ObjectAlloc y]]Σ. Thenr(x) = r1(x) is aMethodInvoc event,
r(y) = r2(y) is an ObjectAlloc event, andr(x)(receiver)
must be equal tor(y)(obj).

Similarly, equation 8 computes the set of records specified by a
left antijoin; mappingsr1 from the set on the left are removed if
they satisfy the predicatew when joined with any mappingr2 from
the set on the right.

2.3 Example Queries
We conclude our discussion of PTQL with a few example

queries.

2.3.1 Actual parameters for each call toFoo.y

SELECT Y.param1, Y.param2
FROM MethodInvoc(‘Foo.y’) Y

Calls to methods namedy that are declared in classFoo match
this query. The query result contains the first two actual parameters
of the call.

This query uses syntactic sugar. As many queries spec-
ify mnameand declClass fields, we use shorthand to spec-
ifying them in the FROMclause. The desugared query is:

SELECT Y.param1, Y.param2
FROM MethodInvoc Y

WHERE Y.mname = ‘y’ AND Y.declClass = ‘Foo’
Notice that the query constrains thedeclClass field. Sup-

pose classFoo has a subclassOSubFoo that overrides the im-
plementation ofy and another subclassISubFoo that inher-
its (but does not override) the implementation ofy . Calls to
ISubFoo.y and OSubFoo.y match the query. If instead of the
predicateY.declClass = ‘Foo’ , the query contained the pred-
icate Y.implClass = ‘Foo’ , then calls toISubFoo.y would
match, but calls toOSubFoo.y would not match. SinceOSubFoo
overridesy , the implClass field for invocations ofOSubFoo.y is
‘OSubFoo’.

2.3.2 Consistency ofhashCode() with equals()

The documentation forjava.lang.Object.hashCode [13]
requires implementations ofhashCode() to agree withequals() .
In particular, ifx.equals(y) returnstrue , thenx.hashCode()
== y.hashCode() should hold. This query checks that calls to
hashCode() andequals() follow this specification.

SELECT xhc.implClass, yhc.implClass, eq.implClass
FROM MethodInvoc(‘Object.equals’) eq

JOIN MethodInvoc(‘Object.hashCode’) xhc
ON eq.receiver = xhc.receiver

JOIN MethodInvoc(‘Object.hashCode’) yhc
ON eq.param1 = yhc.receiver
AND xhc.result != yhc.result

WHERE eq.result = true

In this queryeq matches calls toequals() , andxhc andyhc
match calls tohashCode() . The query is interested in a group of
events such that that thereceiver s of the calls tohashCode()
are thereceiver and first parameter to the call toequals() . For
such a group of events, the specification requires that if the call to
equals() returnstrue , the calls tohashCode must agree. This
query returns results where the calls tohashCode do not agree.

3. PARTIQLE
This section discusses PARTIQLE, our compiler for PTQL

queries. We outline our instrumentation strategy for recording
event records, describe runtime support structures needed to exe-
cute queries online, give our algorithm for query execution, and dis-
cuss optimizations that reduce execution time overhead and mem-
ory footprint.

In designing PARTIQLE, we had to choose between offline anal-
ysis (logging events to a trace file and analyzing the trace post-
mortem) and online analysis. Offline execution of the query allows
for a constant size memory footprint as events are gathered dur-
ing program execution. However, in practice, the postmortem pro-
cessing of large traces usually requires similar resources to simply
doing the analysis online; in particular, because random accesses
to disk are very slow, efficient analyses must read traces sequen-
tially. The main advantages of offline execution are that the analysis
need not compete with the application for space, and clever offline
analyses exploit the ability to read the trace sequentially multiple
times [23].

We prefer online processing whenever reasonable performance
can be obtained. Even though storage is cheap, managing large
volumes of trace data imposes considerable overhead. Online query
execution presents a simpler model to the user by eliminating post-
processing steps, and provides the quickest feedback, keeping the
code-debug cycle short. Another advantage is the ability to stop the
program when certain behaviors are detected and start a debugger
or dump a stack trace. For these reasons, plus the fact that there are
opportunities to optimize and reduce query overhead to less than
the minimum overhead of offline analysis, we chose to implement
PARTIQLE as an online analysis engine. However, one can easily
imagine implementing PTQL queries using offline analysis.

To ease development and deployment of PARTIQLE, we instru-
ment the program at the level of Java bytecodes. The instrumenta-
tion’s use of Java library classes creates re-entrancy issues, which
we resolve by avoiding the use of most Java library classes and not
instrumenting those few library classes that we do use. In theory
PARTIQLE is usable in conjunction with any Java virtual machine,
and in practice we use it with both Sun and IBM VMs.

Compilation of a PTQL query to program instrumentation has
four phases:

• selection of data structures for runtime tables

• timing analysis

• generation of instrumentation to create and store event
records

• generation of query evaluation code

Section 3.1 describes the process of generating custom record
and table types to store event records at runtime. Section 3.2 dis-
cussestiming analysis, which computes a partial order of events
in a query. Timing analysis is crucial to PARTIQLE’s instrumenta-
tion and optimization. Section 3.3 discusses the instrumentation of
user code to generate event records. This instrumentation is also
responsible for adding and removing these records from their col-
lections and triggering query evaluation. Section 3.4 discusses the
code PARTIQLE generates to perform query evaluation. Section 3.5
instantiates PARTIQLE’s instrumentation, runtime data structures,
and optimizations for an example query.

3.1 Runtime Data Structures
The data gathering instrumentation creates and adds records to

PARTIQLE’s runtime data structures. PARTIQLE keeps tworun-
time tablesper identifier in the query’sFROMclause — one table

for start events and one table for end events. Each of these run-
time tables is a collection of records that may satisfy the predi-
cates associated with that slot in the query. For example the “Does
DB.doTransaction() transitively callsleep() ?” query from
Section 1 has four runtime tables: one each for the start and end of
invocations ofdoTrans() , and one each for the start and end of
invocations ofsleep() .

Operations on large run-time tables are expensive and it is im-
portant that both the tables and queries be optimized for perfor-
mance. In designing the tables, we can exploit our knowledge of
the query; for example, if a query does not require a certain data
field, then there is no need to store that field in the table in the first
place. Because such opportunities for optimization are common
and important, we have developed a TABLEEMITTER library that
generates data structure implementations given a specification of
the operations on the table.

3.1.1 Table Specifications
A table specificationconsists of two parts: a list of the types

of the fields (currently we support Java typesint , long and
Object) and a list of operations that the table must support. There
are five kinds of operations, the last four of which are parameter-
ized on a given predicateP:

• adda record to the table (this operation is included in every
specification);

• deleteall records satisfyingP;

• checkwhether there is a record satisfyingP;

• countthe number of records satisfyingP;

• create aniterator to iterate through all the records that satisfy
P, returning each record projected onto some set of fieldsF
and allowing the client to optionally delete each record after
it has been returned.

Performing anadd or deleteoperation invalidates all extant itera-
tors. This condition is not checked at run time.

The predicates that may be used to specify operations are con-
junctions of terms, each term constraining one field of the record.
We allow the following constraints on a scalar field valuev, where
a andb are parameters in the predicate that are supplied when the
operation is called at run time:

• v = a

• v≤ a

• a≤ v

• a≤ v≤ b

Thus each field requires only one constraint. For object types,
only equality constraints are allowed, but PARTIQLE supports both
equality under object identity and equality based on the Java
equals andhashCode methods.

Our TABLEEMITTER table code generator takes a table specifi-
cation and emits a set of Java classes in bytecode form. It also out-
puts one method name for each of the operations, one class name
for each type of iterator, one class name for the records returned by
iterators, and the class name of themain class. These classes and
methods stand alone and implement the desired specification.

3.1.2 Index Trees
Our basic approach stores each record in a Java object and builds

indexes so that each required operation (other thanadd) can find all
the relevant records efficiently. An operation using a predicateP
requires an index on the record fields that appear inP. Indexes over
multiple fields are constructed as nested indexes; an index on field
A andB would be represented as a map from anA-value to a map
from B-values to sets of records.

We must choose a field order for each operation. We can consol-
idate outer indexes, so for example indexes onA, B andA, C can
be represented as a map from anA-value to a pair of maps, fromB-
values to records and fromC-values to records. In general we build
a tree where the edges are labeled with field names such that for ev-
ery query predicate, there is anindex pathin the tree from the root
whose labels are exactly the set of field names mentioned in the
predicate. We assign a simple cost function to trees (currently, the
number of nodes in the tree) and use brute force with some search
pruning to find the best tree.

Each edge in the index tree corresponds to a map data structure in
the instrumentation. The map for an edge is implemented as a hash
table if all predicates whose index path includes the edge require
only equality constraints. Otherwise the map is implemented as a
trie, which provides efficient iteration over all key values in a given
range. (The trie depth is bounded by a constant, since our keys are
fixed-bit-width scalar values.) The code for hash tables and tries is
duplicated and specialized to the field type.

The map chains terminate at sets of records, generally stored as
doubly-linked lists, but sometimes optimized (see below).

3.1.3 Record Counts
Countand operations that check the existence of records do not

need access to actual record objects. Existence check operations
simply traverse maps to see if there is any mapping for the field
values matching the predicate.Countoperations are optimized by
maintaining in each map and linked list the number of records ulti-
mately contained by the map or linked list.

Only iterator and in some casesdeleteoperations actually re-
quire record field values (see below). Thus, in some cases we can
prove that a map data structure implementation’s record lists are
never used. In that case we eliminate the linked lists and keep just
the record count. (The count must be used by some existence check
or countoperation, or else the corresponding index tree leaf could
have been pruned to reduce the tree cost metric.)

3.1.4 Deletion
Deleteoperations iterate through all records matching the dele-

tion predicate. Each record that satisfies the deletion predicate is
removed from every list in which it appears. In cases where the list
is statically optimized away, the record count is decremented. Find-
ing the lists in which each record appears requires lookup along the
map chains corresponding to other branches of the index tree.

If a runtime table is represented as a doubly-linked list and re-
quires nodeletes, PARTIQLE instead represents it as a singly-linked
list. This optimization also applies to lists where PARTIQLE can
prove thatdeletealways deletes either all records in a list or none
of them. For example, when there is a singledeletethe lists at the
end of the map chains for thatdeletesatisfy this property.

3.1.5 Record Representation
PARTIQLE analyzes the operations and index tree to determine

the minimal set of fields that each event record must store to answer
the query. Even if a field appears in a predicate, it does not need
to be stored in the event record if the field’s value is implicit in the

keys of the map chain leading to the record. Of course PARTIQLE

stores in the event record all fields that must be returned during
iteration. Deletion operations may require that an event record store
a field’s value so that when that record is deleted, PARTIQLE can
look up and remove corresponding records in other maps.

3.1.6 Object Inlining
Whenever we know that there will always be exactly one ref-

erence to an object (for example, the objects representing maps),
and the reference is not from an array, PARTIQLE inlines the object
fields into the site of the reference. This optimization sometimes re-
quires duplication and specialization of the referencing object type.
This optimization folds all linked-list links into the record objects.

3.1.7 Examples
These techniques together allow efficient representation of the

runtime tables as many common (and not so common) data struc-
tures.

• Linked ListThe client specifies just an iterator with no pred-
icate, returning some fields. We generate just a singly-linked
list.

• Hash SetThe client specifies an existence check testing a
single field for equality and a deletion operation testing that
field for equality. We generate a hash table mapping field
values to a count of the number of records matching the field
value.

• Hash TableThe client specifies a deletion operation testing a
single field for equality, and an iterator testing that field for
equality and returning a number of fields. We generate a hash
table mapping field values to records.

• Trie The client specifies an iterator testing a field for contain-
ment in some range, returning a number of fields. We gen-
erate a trie. Additional requests for deletion and existence
check on that field would give the same structure.

• Double-Indexed Hash Table. The client specifies an iterator
with no predicate that returns some fields and two deletion
operations, one deleting all records with fieldF1 = v1 and an-
other deleting all records withF2 = v2. We generate a pair of
hash tables, one mappingF1 values to a doubly-linked list of
records and the other mappingF2 values to a doubly-linked
list of records.F1 andF2 are in the record object even if they
aren’t required by the iterator. The links of the doubly-linked
lists are inlined into the record object. Thedelete F1 = v1 op-
eration looks upv1 in theF1 table to get all the records that
matchF1 = v1, and removes them from both of the doubly-
linked lists (which may require deleting entries from theF2
hash table).

3.2 Timing Analysis
PARTIQLE’s instrumentation and optimizations require informa-

tion about possible event orderings in query results. PARTIQLE per-
formstiming analysisto compute a partial order of events in a query
result and stores this partial order as atiming graph, a directed
acyclic graph with two nodes for each identifier in theFROMclause
of the query — one for thestart event(the beginning of a method
invocation or the allocation of an object) and one for theend event
(the end of a method invocation or the garbage collection of an ob-
ject). An edge from nodex to nodey indicates that eventx must
happen before eventy for the events to satisfy the query. For exam-
ple, if the query contains a terma.startTime < b.startTime

Ax.start Ax.end

Bz.start Bz.end

Figure 5: Timing graph for example query from Section 1.

then there is an edge froma.start to b.start in the timing
graph.

For reference, the places where PARTIQLE uses timing informa-
tion are:

• Query evaluation must be triggered after any event which
may be the last in a query result (see Section 3.3).

• If eventB must always happen after a related eventA, PAR-
TIQLE may do an admission check whenB happens (see Sec-
tion 3.3.3).

• If a query has an event that must happen after all other events
in the query, some additional optimizations are possible (see
Section 3.3.4).

The complete rules for building the timing graph are given in
Figure 4. These rules are applied repeatedly until a fixed point
is reached. We call this fixed point theclosed timing graph. In
the figure,Q is the set of predicates in the join conditions and
WHEREclause of the query andE is the set of edges in the timing
graph. Furthermore,m1,m2,o,x,y are query identifiers (m1,m2 for
aMethodInvoc invocation,o for anObjectAlloc), a,b,c are
nodes in the timing graph, andn is an integer. Start nodes precede
end nodes (Rule 1). Rules 2 – 5 show how explicit ordering con-
straints induce timing edges. The lifetime of thethis parameter of
a method includes the method invocation (Rule 6). The lifetime of
an object mentioned as a parameter of a method must include the
start of the method (Rule 7). Similarly a method result’s lifetime
must include the end of the method (Rule 8). The timing graph is
transitively closed (Rule 9). Overlapping method invocations on
the same thread must actually be nested (Rule 10).

Figure 5 shows the timing graph for the example from Sec-
tion 1. In addition to edges induced by explicit constraints in the
query, PARTIQLE infers edges from properties of Java’s seman-
tics. In this example, the dotted edges fromdoTrans .start to
doTrans .end and fromsleep .start to sleep .end follow
from the axiom that the start of a method invocation always pre-
cedes the end of that method invocation (Rule 1). The dashed edges
from doTrans .start to sleep .end and fromsleep .start
to doTrans .end follow from transitivity (Rule 9).

For some optimizations, we identify a subset of the ordering con-
straints guaranteeing that if the subset is observed to hold dynam-
ically, then all constraints in the timing graph are satisfied. Are-
ducedtiming graph is a graph whose closure under the rules in
Figure 4 gives the closed timing graph. Note that reduced timing
graphs are not unique. Starting with the closed timing graph, we
build a reduced graph by repeatedly applying the rules:

• If {(a,b),(b,c),(a,c)} ⊆ E, remove(a,c) from E

• Remove(x.start ,x.end) from E.

• For method invocations x and y, if
{(x.start ,y.start),(y.start ,x.end),(y.end ,x.end)} ⊆ E
and(x.thread = y.thread) ∈Q, remove(y.end ,x.end) from
E.

true ⇒ (x.start ,x.end) ∈ E (1)

(x.startTime < y.startTime) ∈Q ⇒ (x.start ,y.start) ∈ E (2)

(x.endTime < y.startTime) ∈Q ⇒ (x.end ,y.start) ∈ E (3)

(x.startTime < y.endTime) ∈Q ⇒ (x.start ,y.end) ∈ E (4)

(x.endTime < y.endTime) ∈Q ⇒ (x.end ,y.end) ∈ E (5)

(m.receiver = o.obj) ∈Q ⇒ (o.start ,m.start) ∈ E

∧ (m.end ,o.end) ∈ E (6)

(m.paramn = o.obj) ∈Q ⇒ (o.start ,m.start) ∈ E

∧ (m.start ,o.end) ∈ E (7)

(m.result = o.obj) ∈Q ⇒ (o.start ,m.end) ∈ E

∧ (m.end ,o.end) ∈ E (8)

(a,b) ∈ E∧ (b,c) ∈ E ⇒ (a,c) ∈ E (9)

(m1.thread = m2.thread) ∈Q

∧ (m2.start ,m1.end) ∈ E

∧ (m1.start ,m2.start) ∈ E ⇒ (m2.end ,m1.end) ∈ E (10)

Figure 4: Timing Edge Inference.

The reduced timing graph represents a set of timing constraints that
are sufficient to guarantee that all timing constraints in the original
query are met. The rules above ensure that a reduced timing graph
contains constraints that can be checked relatively early in the exe-
cution of a query (see Section 3.3.3).

3.3 Instrumentation to Create Event Records
PARTIQLE inserts instrumentation at the start of each method so

that each invocation generates a newMethodInvoc record (con-
taining values forstartTime , thread , receiver , param1 ,
etc.) and adds the record to PARTIQLE’s runtime data structures.
Similarly, instrumentation before method return stores the return
value (result) and end time (endTime). Should the method
throw an exception, PARTIQLE catches the exception, records
endTime and an exceptional result forresult , and re-throws
the exception. A global lock protects accesses to the shared data
structures. Figure 6 contains pseudocode to generate this instru-
mentation.

Java dictates that in a constructor, thethis reference is not ac-
cessible until after the superclass constructor has been called. This
condition is also enforced at the bytecode level. Thus, in construc-
tors, thereceiver field is not available until some time during
the invocation of the method. This situation complicates some of
the analyses described below; the details are tedious and beyond
the scope of this paper.

Gathering information about object lifetimes is harder than for
method invocations because more code locations are involved.
PARTIQLE inserts instrumentation to record object allocations af-
ter calls to theObject constructor.4 By tracking objects with in-
stances ofjava.lang.ref.WeakReference , PARTIQLE is noti-
fied by the garbage collector when tracked objects are collected.

Creating a record for every allocated Java object is impracti-
cal. Fortunately, most queries do not refer to information available
only at allocation time (thread andstartTime), and constrain
objects to be a parameter or result of a method invocation. For
such queries it suffices to allocate an object’s record lazily, when a
method invocation first makes the object relevant to the query.

4Instrumenting thejava.lang.Object constructor at all causes
many JVMs to crash.

PARTIQLE outputs each query result exactly once and as early
as possible. The occurrence of an event which may, according to
timing analysis, generate the last record in a (single) query result
is a candidate. A candidate triggers a search through the runtime
tables for records that together with the candidate satisfy the query
predicate. We refer to this search asquery evaluation. Section 3.4
describes PARTIQLE’s query evaluation algorithm.

The following subsections discuss several optimizations that ap-
ply to data gathering instrumentation.

3.3.1 Static Filtering
Static predicatesin a query depend only on static properties

of the code. If an instrumentation site violates a static pred-
icate, PARTIQLE need not insert instrumentation at that site.
PARTIQLE exploits several static predicates: comparisons of the
mname, declClass andimplClass fields inMethodInvoc
records with constant strings and comparisons of thetype field in
ObjectAlloc records with constant strings. Static filtering on
type is only possible at sites where enough is known about both
the static type of the object reference in question and the program’s
class hierarchy to statically determine whether the object reference
refers to an object of a desired class.

Consider the example query from Section 1. One
MethodInvoc record in the query is constrained to be named
doTransaction (doTrans.mname = ‘doTransaction’) and
the othersleep (sleep.mname = ‘sleep’). Thus, invocations
of methody never have any part in query results and PARTIQLE

need not instrument the body ofy .

3.3.2 Dynamic Filtering
Query predicates involving fields from only one record can be

checked at the instrumentation site generating the relevant fields.
We refer to these predicates assimple dynamic predicates. For ex-
ample, consider a query that lists all method invocations where the
this pointer is the same as the first parameter:

SELECT f.mname, f.implClass
FROM MethodInvoc f

WHERE f.param1 = f.receiver

The instrumentation at the start of each method checks that the
first parameter to the function is equal to thethis pointer. If not,
the record can never be part of a query result.

PARTIQLE handles comparisons of theresult of a method in-
vocation to fields from the start of the event similarly. Suppose
we replaceparam1 with result in the example. At the start of
method invocations, a record is added to the start event table forf .
Whenresult becomes available at the end of the invocation, the
predicate is checked. The record is dropped if the predicate is false.

3.3.3 Admission Checks
Query predicates that cannot be checked statically and that in-

volve more than one record arejoin predicates. Using the timing
graph, PARTIQLE adds instrumentation to check some join predi-
cates when new records are created. Theseadmission checksdeny
a record admission to a runtime table if it cannot satisfy a join pred-
icate.

Before describing admission checks in detail, we return
to the example from Section 1. Notice the join predicate
(doTrans.startTime < sleep.startTime) and suppose the
instrumentation at the start of an invocation ofsleep() is now
executing (i.e., an invocation ofsleep() is starting). If thissleep
is to satisfy the join predicate above, then according to the timing
graph (Figure 5) an invocation ofdoTransaction() that matches
this sleep must already have started. So, at the start ofsleep()
we check if asupportingrecorddoTrans is stored in thedoTrans
table; if not, thissleep cannot be part of a query result and is
discarded.

If the query includes additional constraints relatingdoTrans and
sleep , for example (doTrans.param1 = sleep.param1), then
these constraints are checked as part of the admission check; the
check fails unless a supportingdoTrans record is found. Join
predicates such asdoTrans.param1 = sleep.result , which
depend on information available at the end ofsleep , cannot be
checked by the admission check. We defer such predicates to are-
tention check. At the end of the method invocation (or object life-
time), when the result is known, we check for supportingdoTrans
records; if none are found we discard the record for the invocation
of sleep() .

PARTIQLE inserts admission or retention checks for each event
e whose node in thereduced timing graphhas a predecessor for
which join predicates witheare available.

3.3.4 The Post-dominator
Some queries have apost-dominator: an event that must hap-

pen after all other events that contribute to query results. A post-
dominator’s node in the timing graph is reachable from (i.e., after)
all nodes that generate either fields in theSELECTclause, or fields
that appear inWHEREor join predicates. Additional optimizations
apply to queries with post-dominators.

Again we consider the query from Section 1. Its timing
graph is in Figure 5. This query requires fields available at
doTrans .start and sleep .start . The reduced tim-
ing graph contains just the two edges (doTrans .start ,
sleep .start) and (sleep .start , doTrans .end). No-
tice that at sleep .start , even thoughdoTrans has not
yet finished, we know that itsendTime must be greater
than any time which has happened. Thus, PARTIQLE

may discharge the ordering constraintsleep.startTime
< doTrans.endTime at sleep .start and thus the node
sleep .start is a post-dominator. Although the query means to
check sleep.endTime < doTrans.endTime , timing analysis
allows PARTIQLE to infer that it can output results before either

event in this predicate has happened. Performing query evaluation
earlier reduces the need to hold records in the runtime tables.

Consider a query with a post-dominator eventp. Sincep is the
last event in a query result,p triggers query evaluation; because it
is the post-dominator, it must be the only event that does so. When
p happens, since any events which join with it must have already
happened, no record forp needs to be stored. Ifp is an end event,
the start record forp may be deleted. Ifp is a start event, no runtime
table is necessary forp. Notice that the absence ofp in its runtime
table may cause subsequent retention checks to fail, thus allowing
deletion of other records.

3.4 Query Evaluation
Query evaluation is the process of searching runtime tables for

query results. Any algorithm for evaluating SQL queries can be
adapted to evaluate PARTIQLE queries. In PARTIQLE query evalua-
tion is triggered when PARTIQLE observes an event that may be the
last in a query. At that point, PARTIQLE performs query evaluation
with respect to that event record — that is, it searches the runtime
tables for records that match.

In practice the order the tables are searched, thejoin order in the
jargon of relational databases, has a major effect on performance.
It is cheaper to apply joins with tables having a small number of
matching records before applying joins with tables having many
matching records. For each eventE that triggers query evaluation,
all other records inE’s table have already triggered query evalua-
tion, so we start the join with the single record for eventE. The
next table in the join order is the one whose join predicates with
E’s table are most selective. We heuristically order the selectivity
of operations as follows: equals on object fields is most selective,
then equals on other fields, then any of<, >, ≥, ≤, and finally 6=
is least selective. The remaining tables are ordered by repeatedly
choosing the table whose join predicates with the already joined
tables are most selective and making it next in the join order.

PARTIQLE uses a nested-loop join that exploits indexes in our
runtime tables. Pseudocode for generating query evaluation code is
shown in Figure 7. Each recursive call togenerateQueryCode
generates another nested loop. Each loop iterates through the
records of a runtime table. For a join, if a record satisfies all check-
able join predicates with the result so far, the record is added to the
result and query evaluation enters the next nested loop. Left anti-
join proceeds to the next nested loop if no records match the result
so far. In the case of left antijoin, no record is saved (because of the
scoping of names in queries, no other predicates can refer to the an-
tijoined table). The base case ofgenerateQueryCode generates
code to print query results. Recursion starts at2 because the first
two slots in result (and the first table or two in the join order) corre-
spond to the event which triggered query evaluation. That event’s
runtime (start and end) tables are not searched — query evaluation
is with respect to the newly generated record that triggered query
evaluation.

Our current implementation does not handle left antijoins where
the right side is other than aObjectAlloc or MethodInvoc .
We have yet to encounter a query where this shortcoming matters.

3.5 Example of Optimized Instrumentation
In this section we show the PARTIQLE instrumentation to answer

the example query from Section 1.
This query requires only one runtime table:tbl doTrans for

MethodInvoc doTrans . As discussed in Section 3.3.4, the start
event forsleep() is the post-dominator for this query, and thus
requires no table. No fields are required from end events, so no
tables are required to store them. The example also has a number

// data gathering -- Method Invocations

// Code enclosed in {}s is generated code.
// Literal generated instructions are denoted in italics .
// For an object x of type Code, Paste(x) pastes x’s contents into a {} block.

for each method M in user code
Code methodBody = code for M;
Code startCode = { skip };
Code endCode = { skip };
for each MethodInvoc E in query

if (M satisfies static predicates) then //Section 3.3.1
startCode = {

Paste(startCode);
synchronized(partiqleLock)

startRec = new startRecord E(getTime(), getThread(), ...);
if (dynamicPreds(startRec)) then //Section 3.3.2

if (admissionChecks(startRec)) then //Section 3.3.3
startTable E.add(startRec); //Section 3.1

};
Code queryEvalCode E = (

if (E may be last event in query) then //Section 3.2
{ query evaluation with respect to startRec,endRec; } //Section 3.4

else
{ skip; }

);
endCode = {

Paste(endCode);
synchronized(partiqleLock)

endRec = new endRecord E(getTime(), return value);
if (!dynamicPreds(startRec, endRec)) then //Section 3.3.2

startTable E.remove(startRec); //Section 3.1
else if (!retentionChecks(startRec,endRec)) then //Section 3.3.3

startTable E.remove(startRec); //Section 3.1
else

endTable E.add(endRec); //Section 3.1
Paste(queryEvalCode E);

};
end for;
methodBody = methodBody with endCode inserted before returns;
methodBody = {

Paste(startCode);
try

Paste(methodBody);
catch (Throwable exn)

Paste(endCode);
throw exn;

};
replace body of M with methodBody;

end for;

Figure 6: Pseudocode for generating instrumentation to create and store event records forMethodInvoc events.

//simplified query evaluation

// Code enclosed in {}s is generated code.
// Literal generated instructions are denoted in italics .
// For an object x of type Code, Paste(x) pastes x’s contents into a {} block.

Code[] queryEvalCode;
for each event E that could occur last

EventRecord[] joinOrder = computeJoinOrder(E);
queryEvalCode[E] = generateQueryCode(joinOrder, 2);

// The inductive assumption is that result[0..i-1] has event records
// for the events in joinOrder[0..i-1].
// The recursion starts at 2 because query evaluation is always with
// respect to a particular event record.

Code generateQueryCode(EventRecord[] joinOrder, int i)
if (i>joinOrder.length) then

return { output query results; };
Code restOfQuery = generateQueryCode(joinOrder, i+1);
E = joinOrder[i];

// For joins the generated code looks through the table for joinOrder[i]
// and finds any records which match the result so far. If a record matches,
// it is added to the result and the next table in the join order is considered.
if (E requires a join) then

return {
for each r in runtimeTable E

if (joinPreds(result,r)) then
result[i] = r;
Paste(restOfQuery);

// continue looping through runtimeTable E
};

// For left antijoins the generated code looks through the table for joinOrder[i]
// and finds any records which match the result so far. If no records match,
// the next table in the join order is considered.
else if (E requires a left antijoin) then

return {
boolean match = false;
for each r in runtimeTable E

match = match || antiJoinPreds(result,r);
if (!match)

Paste(restOfQuery);
};

Figure 7: Pseudocode for generating query evaluation code.

public class DB {
// ...
B b;
void doTransaction() {

StartRecord_doTrans r;
synchronized(partiqleLock) {

r = tbl_doTrans.add(getTime(), getThread());
}
try {

b.y(); /* method body */
} catch (Throwable e) {

synchronized(partiqleLock) {
tbl_doTrans.remove(r);

}
throw e;

}
synchronized(partiqleLock) {

tbl_doTrans.remove(r);
} } }

public class B {
// ...
void y() { /* method y is unchanged */

sleep();
}
void sleep() {

synchronized(partiqleLock) {
if (tbl_doTrans.check(getThread())) {

//query evaluation
print(...);

} } } }

Figure 8: Optimized instrumented code for Section 1 example.

of static predicates (expanded here from syntactic sugar):

doTrans.mname = ‘doTransaction’
AND doTrans.declClass = ‘DB’
AND sleep.mname = ‘sleep’
AND sleep.declClass = ‘B’

Only DB.doTransaction() needs to be instrumented to add
records totbl doTrans and only sleep() needs to be instru-
mented to perform query evaluation.

Since the (optimized away) table forsleep .start is always
empty, the retention check at the end ofDB.doTransaction()
always fails. Thus, the instrumentation at the end of
DB.doTransaction() unconditionally removes the record from
tbl doTrans , andtbl doTrans contains only records for method
invocations that have begun but not completed.

Query evaluation at the start ofsleep() gets the current time
and thread and finds records intbl doTrans with the same thread
and earlierstartTime . For each such recordX it outputs
〈X.startTime,startTime〉. PARTIQLE proves that the timing
constraint need not be checked during query evaluation since ev-
ery X we find in tbl doTrans must have started before now, i.e.
sleep .start . Thus we get the code shown in Figure 8. We
delete a particular record by deleting all records with the record’s
start time (start times are unique).

In Figure 8, the only required operations are add a record, delete
a record with a given start time, and check to see if there are any
records matching a particular thread. TABLEEMITTER implements
this structure with two hash tables: one mapping a start time to a
doubly-linked list of records with that start time and one mapping a
thread to a doubly-linked list of records for that thread. Thusadd,
removeandcheckare all constant-time operations. Theremoveop-
eration is constant time because start times are unique. While we
have not implemented it, it is possible to do even better in this ex-

Example Methods Description
db 35 database management (SpecJVM98)
compress 44 LZW (de)compression (SpecJVM98)
lisp 104 Lisp interpreter
jscheme 110 Scheme interpreter
mips 112 architectural simulator
mtrt 184 multi-threaded ray-tracer (SpecJVM98)
mpeg 280 MP3 decoder (SpecJVM98)
jack 313 Java parser generator (SpecJVM98)
jess 673 expert shell system (SpecJVM98)
javac 1179 JDK 1.0.2 Java compiler (SpecJVM98)
tomcat 16940 Apache Web application server (v4.0.4)

Figure 9: Benchmark Programs.

ample. Uniqueness of the start times could allow TABLEEMITTER

to reduce the data structure to a single hash table mapping a thread
to the count of records for that thread, which can then be special-
ized to a thread-local integer that does not require synchronization.

4. EXPERIMENTS

4.1 Benchmarks
Our benchmark programs are listed in Figure 9. They include

programs from the SpecJVM98 suite [26] and the Apache Tom-
cat [2] version 4 Web server and servlet container (which includes
the Xerces XML parser and other components). We report code
size as the number of methods in the application. However, we
also instrument the Java class library, so the actual code subject to
instrumentation is much larger than reported here (although hard to
measure directly).

Except for Tomcat, we ran the programs on inputs provided; we
used the largest input size available for the SpecJVM98 bench-
marks. For Tomcat, we gathered a list of all URLs to pages under
Tomcat’s “examples” directory and wrote a harness that loads these
pages sequentially, running through the complete list fifty times.
This test exercises a number of JSPs and servlets.

4.2 Queries
We wrote several queries aimed at finding correctness or perfor-

mance bugs in Java code.

1. HashCodeConsistent checks thathashCode called on the
same object always returns the same value. Violations of this
rule cause problems if the object is stored as a key in some
data structure.

2. EqualObjectsButInequalHashCodes checks that if two
objects are deemed equal byequals , then they have the
samehashCode .

3. InequalObjectsButEqualHashCodes checks that if two
objects are not deemed equal byequals , then their hash
codes are different. Violation of this rule is not strictly speak-
ing a bug, but could lead to performance problems due to
hash collisions. The query is very similar to the previous
query.

4. StringConcats searches for the anti-pattern

String s = ...;
for (...) { s = s + ...; }

This code can induceO(n2) performance wheren is the
length of the final string. Avoiding this problem is listed as

“Best Practice 11” in an IBM white paper [28]. We look
for the result of a call toStringBuffer.toString being
passed to the constructor of anotherStringBuffer , then
the result of thatStringBuffer ’s toString being passed
to construct anotherStringBuffer , and so on. Our actual
query looks for a chain of five such constructions.

5. DelayedClose searches forclose() operations on stream
objects that have not been read or written to for a certain
length of time — one second in these tests. Such streams
could be considered resource leaks; they should be closed as
soon as the application has finished using them. This query
was inspired by “Best Practice 8” in the same IBM white
paper [28].

We constrain the search to the Apache stream classes used by
Tomcat because instrumenting basic Java streams causes re-
entrancy problems for the PARTIQLE runtime support library.
We only report results for this query on Tomcat since none
of the other benchmarks uses Apache stream classes.

6. CompareToReflexive searches forComparable objectso
which return nonzero from a call too.compareTo (o).

7. CompareToAntisymmetric searches for objectsx and y
such that the sign ofx.compareTo (y) is not the opposite of
the sign ofy.compareTo (x). Because PARTIQLE currently
lacks a “sign” function, we construct three queries covering
the cases wherex.compareTo (y) < 0, = 0, and> 0. We re-
port results for the first case.

8. The queries CompareToNonZeroButEqualsTrue and
CompareToZeroButEqualsFalse check that for all
Comparable objectsx andy, x.equals (y) is true if and only
if x.compareTo (y) returns zero.

4.3 Overhead of Instrumentation
We measured the baseline performance of our benchmarks

without instrumentation and compared them to the instrumented
performance for each of the queries. We recorded the wall-
clock running time of each run in seconds and the heap mem-
ory high-water mark in megabytes (measured by sampling Java’s
System.totalMemory() - System.freeMemory() every 500
milliseconds). The experiments were carried out on an unloaded
dual-processor 550MHz Pentium III with 1.5 GB of memory, run-
ning IBM’s JDK 1.4.2 on Fedora Core 1 Linux.

Figure 10 shows the runtime overhead as a ratio of the runtime
with instrumentation to the runtime without instrumentation; the
second line shows running time in seconds for the uninstrumented
program. Figure 11 shows the ratio of maximum memory con-
sumed by the instrumented program during its run to that of the
uninstrumented program; the second line shows maximum mem-
ory usage for the uninstrumented program.

These results show that the overhead of PARTIQLE is quite rea-
sonable for use in a testing environment. Jitter in the results —
especially where the instrumented code runs faster or in less space
than the uninstrumented code — seems to be due to changes in
the garbage collection or JIT behavior, which can be sensitive
to small changes in program behavior, especially for short-lived
benchmarks.

4.4 Evaluation of Optimizations
In this section we report on the effect of the various query

optimizations: static predicates, dynamic predicates, admissions

checks, exploiting post-dominators, and join ordering. Not sur-
prisingly, different optimizations are important in different circum-
stances. Overall, we find that using static predicates and join or-
dering are particularly important for achieving reasonable perfor-
mance.

Checking static predicates at instrumentation time is very impor-
tant and only grows in importance with the size of the program. For
example, if a query only focuses on events that happen in a small
number of methods, instrumenting every method in a large appli-
cation is extremely wasteful. While we did not evaluate this claim
quantitatively (it is difficult to turn off use of static predicates in our
system) our experience with early versions of PARTIQLE was that
having every method invocation or object allocation run instrumen-
tation can make the program run hundreds of times more slowly.

To measure the performance impact of checking simple dynamic
predicates early, we modified PARTIQLE to check these predicates
later, at query evaluation time instead of when the relevant event
record is generated, and re-ran our queries. This delay causes event
records that never participate in query results (because they do not
satisfy a simple dynamic predicate) to be stored and traversed dur-
ing admission checks and query evaluation. Figure 12 shows the
run time and maximum memory usage in this situation as a frac-
tion of the run time and maximum memory usage reported in Fig-
ures 10 and 11. As shown in the figure, without early filtering on
simple dynamic predicates run time and memory usage increase;
in several situations overhead is much worse than double what it is
without this optimization.

To measure the performance impact of admission checks, we
ran theStringConcats query, the only query which makes ad-
mission checks, with all admission checks turned off. Admission
checks trade time for space (thus improving scalability). That is, we
normally expect admissions checks to make the program run more
slowly with the benefit of conserving space. Figure 13 shows the
results, again as a ratio of time or memory usage with optimization
disabled to time or memory usage with optimization enabled. As
expected, some queries run faster with admission checks disabled.
Admission checks substantially helpjack , the benchmark with the
highest overhead. On most of the other benchmarks, however, their
effect is lost in the noise.

To measure the performance impact of join order we ran our
queries with alternate join orders. In most cases there was only
one other join order and we chose it. ForStringConcats , we re-
versed the order. Figure 14 shows the results. To save space, we
omit queries with only one join order and queries for which chang-
ing the join order made no difference. As expected, join order has
no effect on memory consumption, so we report only slowdown.
Cells with ∞ indicate that the query took longer than an hour and
was killed.

One notable cell isCompareToZeroButEqualsFalse applied
to db. The alternate join order actually shows a substantial (roughly
10x) speed up. PARTIQLE’s static selectivity heuristic for deter-
mining join order ranks the two join orders equally and arbitrarily
chooses between them. Choosing a join order dynamically, based
on the sizes of the tables and the selectivity of the join predicates,
is standard in relational databases and would benefit PARTIQLE in
cases such as this one.

Our implementation is not well suited to measuring the benefit of
our post-dominator optimizations. Since these optimizations elide
storage of records in runtime tables and remove checks to delete
records, exploiting a post-dominator can only improve both time
and space. Post-dominator optimizations apply to seven of our nine
example queries.

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
baseline time (seconds) 37 21 5 9 10 12 17 22 19 34 54

CompareToAntisymmetric 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CompareToReflexive 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
HashCodeConsistent 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.8 1.2
DelayedClose 1.1
CompareToNonzeroButEqualsTrue 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 2.8 1.1
CompareToZeroButEqualsFalse 17.6 1.0 1.0 1.1 1.0 1.0 1.0 1.0 9.9 2.5 1.1
EqualObjectsButInequalHashCodes 1.1 0.9 1.0 1.0 1.0 1.0 1.0 1.0 12.2 4.9 2.0
InequalObjectsButEqualHashCodes 8.7 1.0 1.0 1.1 1.0 1.0 1.0 1.0 14.0 3.2 1.3
StringConcats 1.2 1.2 1.4 1.9 2.7 1.3 1.2 9.7 2.0 5.8 3.9

Figure 10: Runtime Overhead(instrumented time / uninstrumented time).

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
baseline memory (MB) 18 10 3 3 16 11 2 4 8 28 13

CompareToAntisymmetric 1.0 1.2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CompareToReflexive 1.0 1.0 1.2 1.0 1.0 1.3 1.0 1.1 1.0 1.0 1.1
HashCodeConsistent 1.0 1.2 0.9 1.0 1.0 1.0 1.0 1.1 0.8 1.4 1.4
DelayedClose 5.8
CompareToNonzeroButEqualsTrue 1.0 1.2 0.9 1.2 0.9 1.1 1.0 1.1 94.2 2.3 1.5
CompareToZeroButEqualsFalse 5.6 1.0 0.9 1.2 0.9 1.2 1.0 1.0 94.7 2.0 2.2
EqualObjectsButInequalHashCodes1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.1 110.4 2.9 1.7
InequalObjectsButEqualHashCodes5.5 1.2 0.9 1.2 1.0 1.0 1.0 1.1 101.9 2.5 2.0
StringConcats 1.2 1.0 1.2 1.5 1.4 1.7 1.5 22.9 2.1 4.7 13.4

Figure 11: Memory Overhead(instrumented max memory / uninstrumented max memory).

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
CompareToReflexive 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
HashCodeConsistent 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DelayedClose 1.0
CompareToNonzeroButEqualsTrue 12.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.2 1.1 1.0
CompareToZeroButEqualsFalse 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.4 1.1
EqualObjectsButInequalHashCodes 7.4 1.1 1.0 1.0 1.0 1.0 1.0 1.0 2.9 1.1 1.1
InequalObjectsButEqualHashCodes 0.8 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.0
StringConcats 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
CompareToReflexive 1.0 1.0 0.7 1.0 0.9 0.8 1.0 0.9 1.0 1.1 1.0
HashCodeConsistent 1.0 1.0 1.4 1.0 1.0 1.0 1.0 0.9 1.2 1.0 0.9
DelayedClose 1.0
CompareToNonzeroButEqualsTrue 7.7 1.0 1.3 1.0 1.0 0.9 1.0 1.1 2.0 1.4 1.7
CompareToZeroButEqualsFalse 1.0 1.2 1.0 1.0 1.1 1.0 1.0 0.9 1.6 1.4 1.2
EqualObjectsButInequalHashCodes5.8 1.2 0.9 1.0 1.1 1.5 1.0 0.9 1.7 1.2 1.5
InequalObjectsButEqualHashCodes1.0 0.8 1.3 1.0 1.0 1.0 1.0 0.8 1.8 1.5 1.2
StringConcats 1.0 1.0 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0

Figure 12: Runtime (top) and Memory (bottom) overhead for delaying dynamic predicates until query evaluation(non-optimized /
regular optimized). Higher numbers mean checking simple dynamic predicates early is a win.

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
StringConcats 1.0 0.9 0.8 0.7 0.6 0.9 0.9 3.6 0.8 0.6 0.8

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
StringConcats 1.0 1.2 0.9 1.0 1.0 1.0 0.9 1.2 1.1 1.0 1.0

Figure 13: Runtime (top) and Memory (bottom) overhead for not doing any admission checks(non-optimized / regular optimized).
Higher numbers mean admission checks are a win.

db compress lisp jscheme MipsSimulator mtrt mpegaudio jack jess javac tomcat
CompareToNonzeroButEqualsTrue 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0
CompareToZeroButEqualsFalse 0.1 0.9 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.2 1.0
EqualObjectsButInequalHashCodes1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 ∞ 15.0
InequalObjectsButEqualHashCodes1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 ∞ 1.2
StringConcats 1.1 1.1 1.2 1.1 1.4 1.2 1.1 ∞ ∞ ∞ ∞

Figure 14: Runtime Overhead for Alternate Join Order (alternate join time / regular time) . Higher numbers meanPARTIQLE’s join
order is better.

4.5 Query Results
Our queries discovered several interesting program behaviors.

When PARTIQLE outputs a query result, it produces a stack trace
for the current event to aid diagnosis. The usefulness of these stack
traces in diagnosing faults is one advantage of online query exe-
cution. These issues could have been found with custom dynamic
analysis or even in some cases with simple static analysis; however,
writing PTQL queries is an extremely quick way to look for new
kinds of behaviors.

Applying StringConcats to thejack benchmark found a clas-
sic poorly-performingString concatenation loop. Unfortunately
the loop is in the heart of thejack lexer: jack builds tokens by
appending one character at a time to aString ! This code isO(n2)
in the length of the tokens. Althoughjack is a very well-studied
benchmark, we believe this bug was previously unknown.

Applying HashCodeConsistent to tomcat found a situa-
tion in the org.apache.xerces.validators.common pack-
age of the Xerces XML parser whereCMStateSet objects re-
turn differenthashCode s at different times. A code fragment in
DFAContentModel in the same package looks like:

CMStateSet newSet = null;
HashMap states = new HashMap();
for (...) {

if (newSet == null) {
newSet = new CMStateSet();

} else {
newSet.clear();

}
...
if (...) {

... = states.get(newSet);
}
if (...) {

states.put(newSet, ...);
newSet = null;

}
}

So objects referenced bynewSet are used for lookups inter-
leaved with mutations, but once the objects are put into thestates
as keys, the objects are no longer mutated. This code is correct, but
very subtle.

Applying DelayedClose to tomcat detected examples of
HTTP response streams being closed a few seconds after the last
write to the stream. The closure delays are associated with HTTP
requests for non-existent documents, but they appear only intermit-
tently, and only when our test harness uses the HTTP/1.1-aware
URLConnection Java class to issue the requests; simple HTTP re-
quests issued over a plain socket do not cause the problem to man-
ifest. We have not isolated the exact issue, but it appears to be a
problem in thetomcat HTTP stack.

Applying StringConcats to tomcat found performance bugs
in classesorg.apache.catalina.util.xml.XmlMapper and
com.ibm.security.util.ObjectIdentifier .

XmlMapper handles SAX XML parsing events. It has aString
field body . The SAX parser callsXmlMapper.characters re-
peatedly to signal that new body characters have been parsed.
XmlMapper.characters appends them to the body using

body = body + new String(buf, offset, len);

This code can lead to parsing taking timeO(n2) in the length of the
body text. This bug persisted in theXmlMapper source until the
whole package was obsoleted.

The methodObjectIdentifier.toString builds a string
representation for anObjectIdentifier by concatenating the

string representation of each member of an array of components;
the string is accumulated in aString object. This bug could slow
JVM startup, sinceObjectIdentifier.toString appears to be
called when security certificates are parsed, which happens when
classes are loaded from signed JAR files. The bug is still present in
IBM JDK 1.4.2.

4.6 Matching Method Pairs in Eclipse
In this section we compare PARTIQLE to PQL (see Sec-

tion 5.2.1), a related system for analyzing dynamic program be-
havior, by reproducing one of the experiments from [24].

In many APIs there are methods which must be invoked in a
certain order. A requirement is of the form “a call to method
A must always be followed by a call to method B.” We instru-
mented Eclipse [6] version 3.0.0, a Java integrated development
environment, with queries to check 8 such properties. For exam-
ple, o.createWidget() must always be followed by a call to
o.destroyWidget() . To look for query results, we ran the in-
strumented Eclipse and exercised various pieces of its functionality
(for example creating new projects and classes, refactoring code,
opening and closing projects and files). The query below is repre-
sentative of the 8 we ran.

SELECT A.implClass
FROM MethodInvoc(‘*.createWidget’) A

JOIN ObjectAlloc o
ON A.receiver = o.obj

LEFT ANTIJOIN MethodInvoc(‘*.destroyWidget’) B
ON B.receiver = o.obj

The results of running these 8 queries are shown in Figure 4.6.
As in the PQL paper [24], we report the number of concrete types
for o that match the query. The results do not exactly match those
in [24]. It’s likely that our experiments involved different sets of
plug-ins and different workloads. Regardless, both PARTIQLE and
PQL find a substantial number of bugs in Eclipse.

5. RELATED WORK
There are several areas of related work: program monitors, in-

strumentation and trace query engines, systems that “guess” large
numbers of predicates and return those that were true during pro-
gram execution, and aspect-oriented programming systems.

5.1 Program Monitors
Given a specification of acceptable runtime behavior, a program

monitor observes program execution (perhaps as a stream of events
or state transitions) and signals an error when the execution violates
the specification. Program monitoring systems vary in the nature
and expressive power of their languages for specifying monitors, in
their notion of an event, and in the efficiency of their implementa-
tions.

Bates proposes [4] an Event-Based Behavioral Abstraction
(EBBA) to monitor and debug distributed systems. He presents
a regular expression-like specification language in which user-
defined events in the execution of the system correspond to char-
acters in the alphabet. The user chooses places in source code to
emit events and the system adds instrumentation. EBBA’s specifi-
cation language cannot express data constraints among events.

Rapide [22] is a language for constructing executable models of
distributed systems. Rapide abstracts the system into a network of
processes that communicate via events. An execution of the model
results in a set of partially ordered events. Rapide modules may
specify patterns of events that must not occur in the partial order.

Method A Method B Instrumentation points Types matching query
createWidget destroyWidget 17 14
register deregister 63 18
acquireXMLParsing releaseXMLParsing 4 0
acquireDocument releaseDocument 8 0
install uninstall 113 8
installBundle uninstallBundle 10 3
start stop 323 7
startup shutdown 150 6

Total 688 56

Figure 15: Results of running matching pairs query on Eclipse

Some processes in the model may be replaced by a concrete imple-
mentation of that process together with code to map the behavior of
the implementation to events. Thus can one test the conformance
of actual systems to a model. Rapide’s event patterns do support
data and time constraints, but lack any mechanism (like PTQL’s
antijoin) for specifying events that do not happen.

The monitoring and checking (MaC) framework [16, 15] allows
the user to define events based on changes to values of variables
and calls to methods. The user tracks state and specifies undesirable
behavior via a reactive system. Thus, in MaC, it is the user’s burden
to define events and track system state.

Eagle [3] is a framework for defining finite trace program moni-
toring logics, specifying formulas to monitor, and augmenting Java
programs with these monitors. Eagle can define logics with past
and future time temporal operators, interval logics, real time con-
straints, data constraints, and other idioms. The runtime component
of Eagle rewrites monitoring formulas on the fly as the program
executes and reports whether they have been satisfied at program
termination. We are unaware of an evaluation of Eagle’s efficiency
or how it could be optimized.

5.2 Trace Query Engines
Closely related to program monitors are trace query systems.

Like PARTIQLE, these systems answer queries about the sequence
of events during program execution.

Finkelbeiner et al. [9] extend unquantified LTL to collect statis-
tics over program runs. Example statistics include counts of a par-
ticular event and average number of retransmissions for a packet.
Because the query language is based on LTL without quantification,
there is no support for data constraints between events. Expressing
partially ordered events in LTL is also burdensome.

Goldszmidt et al. [10] propose a system for debugging concur-
rent programs. Their system records a trace of events in an offline
database. The user can then query this database with LTL formulas
or replay sequences of events.

More similar to PARTIQLE is the proposal for a program moni-
toring and measuring system (PMMS) by Liao and Cohen [19, 18].
Like PARTIQLE, PMMS compiles a high level, relational query lan-
guage (similar to the domain calculus) over program traces to pro-
gram instrumentation. Our contributions over PMMS are in the
sophistication and completeness of our implementation and opti-
mizations, the application to Java (including handling of threads
and objects, not addressed by PMMS), and a more thorough evalua-
tion, including demonstration of queries that yield insightful results
on real programs. The experimental evaluation of PMMS consists
of instrumenting one program and reporting the number of checks
saved by using static and dynamic filtering versus the naive ap-
proach of instrumenting everything. In the vocabulary of Section 3,

PMMS has a timing graph but does not use inference rules to infer
additional edges for the graph. PMMS only supports incremental
output of query results on queries for which the events in the query
are enclosed by a singleinterval event(e.g., a method invocation)
– the output comes at the closing event in the interval; PARTIQLE

is more general. PMMS also does not create custom data structures
for its runtime tables.

The Hyades project [12] (now apparently subsumed by the
Eclipse Test and Performance Tools Platform) is developing a data
model for traces of Java programs. The data model is expressed in
the Eclipse Modeling Framework [7] and therefore one can write
queries in terms of this data model using the Object Constraint Lan-
guage [5]. We initially tried to use OCL over the Hyades model as
the query language for our work. We found, however, that for our
purposes the navigational nature of OCL queries (as opposed to
PTQL’s relational queries) gives them unnecessary structure and
complexity.

Our contribution over this prior work is in our combination of
a relational data model for program traces, declarative query lan-
guage, handling of real-time and data constraints, automatic instru-
mentation of user code, and online query execution. Also signif-
icant is our demonstration that PARTIQLE has acceptable perfor-
mance for a variety of programs and queries, and that it is possible
to create useful and concise queries.

5.2.1 Program Query Language (PQL)
PQL [24] is another proposal for instrumenting Java programs

to answer declarative queries about program behavior, developed
concurrently and independently of our efforts. The goals of PQL
are the same as those of PARTIQLE, but our query languages differ.
PQL does more sophisticated static analysis of the Java source than
PARTIQLE, including a static pointer analysis. PQL queries can
recursively call subqueries, which allows queries about properties
like transitive data flow. PQL, however, lacks any notion of real
time.

Of the four experiments reported in [24], PARTIQLE can ex-
press three in their full generality: serialization errors, mismatched
method pairs (see Section 4.6), and lapsed listeners. PARTIQLE can
express a less powerful version of the SQL injection attack query
that does not consider transitive data flow.

Of our queries, PQL can expressStringConcats . With a few
straightforward extensions, however, it could express all of them.
PQL cannot expressDelayedClose because of the time constraint.
PQL cannot express our other queries because the queries reason
about integer and boolean return values of methods.

The dynamic query execution strategies of PQL and PARTIQLE

make different tradeoffs. PQL uses a state machine approach,
essentially constructing partial query results eagerly. PARTIQLE

keeps tables of each event kind and joins them only when a full
query result may be available. If there arek kinds of events and a
program trace containsEi events of kindi, PQL risks using space
proportional to the product

(
∏k

i=1Ei
)

in cases where there are many
partial query results. With PARTIQLE, the memory requirement is
proportional to the sum

(
∑k

i=1Ei
)
. PARTIQLE on the other hand

risks storing records that will never participate in query results
(a risk that admission and retention checks mitigate). It is clear
from the results in [24] that PQL’s implementation choice works
well in practice for many useful queries. PARTIQLE’s implementa-
tion choice allows for reasonable performance even when there are
many events, few ordering constraints, and many partial results.

5.3 Predicate-Guessing Systems
DIDUCE [11] instruments Java programs to track invariants at

various program sites. The violation of an apparent invariant, es-
pecially one that had been true many times, yields a warning and a
relaxation of the monitored property. Deviations from the norm of-
ten indicate bugs or interesting facts about program execution. Li-
blit et al. [20, 21] instrument programs to use random sampling of
program points to gather small amounts of data from each of many
executions. Statistical analysis correlates certain observations with
program failure, giving the developer insight into what situations
cause bugs. Daikon [8] intensively instruments programs to dis-
cover likely invariants.

These systems are complementary to PARTIQLE. While PAR-
TIQLE provides sparse instrumentation to answer specific ques-
tions, these systems use general instrumentation to find interesting
facts about a program.

5.4 Aspect-Oriented Programming
In traditional object-oriented code, certain concerns, such as

what data to record in a log file, must be spread across many
classes. Aspect-oriented programming seeks to concentrate the
code for thesecrosscuttingconcerns in a single module instead of
spreading it across many modules. AspectJ [14], an aspect-oriented
extension to Java, accomplishes this concentration viaaspects, join
points, pointcuts, andadvice. A join point is a point in the pro-
gram’s execution, such as a method entry or return, an object allo-
cation, or a field write. Apointcut is a set of join points.Advice
is code to be executed either before, after, or instead of the code at
a join point. Advice code has access to data about the join point
that triggered its execution. Anaspectis a module that contains
pointcuts and advice. For instance, a logging aspect might contain
a pointcut that identifies the points in a program where data is to be
output to a log file and advice to actually do the logging.

An important feature of an aspect-oriented programming lan-
guage is its language for defining pointcuts. The pointcut language
of AspectJ is somewhat limited; other proposals [25, 27, 1] are
more expressive. In particular, these proposals allow advice to ex-
ecute based on the history of program execution.

The goals of PTQL and PARTIQLE are similar, but not identical,
to the goals of languages for specifying pointcuts (or tracecuts or
tracematches). The common concern is with identifying points in
program execution.5 Indeed, with a sufficiently expressive pointcut
language, one could implement a PTQL query with a pointcut to
specify the interesting patterns of events and advice to print out de-
sired query results. Conversely, any sufficiently expressive pointcut
language has to solve many of the same problems PARTIQLE does
to obtain reasonable performance.

5The particular notion of “event” (or join point in aspect-oriented
programming terms) is less important; any sufficiently rich data
model can accommodate many kinds of primitive events.

A pointcut in ALPHA [25] is the set of join points that satisfy a
logic query (in Prolog) against models of a program’s abstract syn-
tax tree, execution trace, heap, and static type assignments. ALPHA

queries over the execution trace have similar expressive power to
PARTIQLE queries.

Tracecuts [27] are a generalization of pointcuts that take a pro-
gram’s execution history into account. A tracecut is specified as a
context free grammar over events in the program trace. When a se-
quence of events occurs that form a string in the tracecut’s (context
free) language, the advice for the tracecut executes. Specifying pat-
terns of events as a context-free language allows, as in PQL (Sec-
tion 5.2.1), a kind of recursion in subqueries, but makes it awkward
to express queries in which events may happen in any order.

Neither the work on ALPHA nor the work on tracecuts address
the problem of efficiently implementing their query languages.
Neither language is expressive enough to reason about real time
constraints.6

5.4.1 Tracematches
Like tracecuts, tracematches [1] generalize pointcuts. A trace-

match is specified as a regular expression over events in the pro-
gram trace. Whenever a string of events that matches a tracematch’s
regular expression occurs, that tracematch’s advice is executed. In
order to allow data constraints among events, each event may bind
variables; the events in a match must agree on the value of all vari-
ables. Further data constraints can be checked in the advice (in
many cases, PARTIQLE can check data constraints earlier).

The differing goals of PARTIQLE and tracematches lead to differ-
ent notions of matching a program trace. A PTQL query matches
all subsequences of a program trace that satisfy the query; all events
that are not explicitly forbidden (with an antijoin) are allowed to oc-
cur between these matching events. PARTIQLE’s notion of a match
makes sense for its goal of examining program behavior. A trace-
match regular expression matches all subsequences of the program
trace where events in the match are separated by either events that
are not in the tracematch’s alphabet (of events) or that contradict
a variable binding from a previous event in the match. In other
words, all events in the alphabet (that do not contradict previous
variable bindings) that are not explicitly allowed are forbidden. The
tracematch notion of a match makes sense for its goal of executing
advice when a particular series of events occurs.

Consider for instance a tracematch that defines three events cor-
responding to calls toa, b, andc respectively and that binds the
receiver object tox:

tracematch(Object x) {
// events
// bind receiver object to x
sym A after: call(* a()) && target(x);
sym B after: call(* b()) && target(x);
sym C after: call(* c()) && target(x);

// pattern
A B C

// advice
{ System.out.prinln("a b c"); }

}

6We offer this observation by way of comparison; determining
whether real time constraints are desirable for a pointcut language
is beyond the scope of this paper.

Consider also a seemingly identical PTQL query:

SELECT *
FROM MethodInvoc(‘*.a’) A

JOIN MethodInvoc(‘*.b’) B
ON A.receiver = B.receiver

JOIN MethodInvoc(‘*.c’) C
ON B.receiver = C.receiver

On the following program, the PTQL query returns a query re-
sult, but the tracematch does not execute its advice.

o.a(); o.c(); o.b(); o.c();

On the following program, the PTQL query returns two results
and the tracematch executes its advice twice.

o.a(); q.a(); o.b(); q.b(); q.c(); o.c();

Unlike PARTIQLE, the implementation of tracematches eagerly
constructs partial matches. Thus, the implementation of trace-
matches resembles that of PQL and the discussion in Section 5.2.1
applies.

5.5 Other Related Work
Lencevicius et al. [17] propose a query-based debugger. While

the program is stopped at a breakpoint, the user may query the ob-
jects in the heap. A query consists of two parts: a search domain,
specified as a tuple of types, and a constraint expression, specified
as an arbitrary expression in the source language, over tuples of
objects in the search domain. PARTIQLE’s focus on relationships
among events that occur during various points in program execu-
tion is quite different.

6. CONCLUSION
We have described PTQL, a language for writing expressive,

declarative queries about program behavior, and PARTIQLE, a sys-
tem for compiling PTQL queries into light-weight instrumentation
on Java programs. Using PTQL and PARTIQLE avoids the com-
plexity and code maintenance problems of manual instrumentation.
We demonstrate that PTQL can express queries that find interest-
ing program behaviors and that PARTIQLE is efficient enough to
run these queries on real Java programs.

7. REFERENCES
[1] C. Allen, P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, O. Lhot́ak, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding trace matching with
free variables to AspectJ. InProceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2005.

[2] Apache tomcat. project home page at
http://jakarta.apache.org/tomcat/ .

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. InProceedings of the 4th
International Workshop on Runtime Verification (RV’04),
2004.

[4] P. C. Bates. Debugging heterogeneous distributed systems
using event-based models of behavior.ACM Transactions on
Computer Systems, 13(1), 1995.

[5] T. Clark, J. Warmer, and B. Schmidt.Object Modeling With
the OCL: The Rationale Behind the Object Constraint
Language. LNCS 2263. Spring-Verlag, 2002.

[6] Eclipse. Project page athttp://www.eclipse.org/ .

[7] Eclipse technology - EMF project. Project page at
http://www.eclipse.org/emf/ .

[8] M. D. Ernst.Dynamically Discovering Likely Program
Invariants. Ph.D. thesis, University of Washington
Department of Computer Science and Engineering, Seattle,
Washington, Aug. 2000.

[9] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma.
Collecting statistics over runtime executions. InProceedings
of the 2nd International Workshop on Runtime Verification
(RV’02), Electronic Notes in Theoretical Computer Science,
Elsevier Science, volume 70, 2002.

[10] G. S. Goldszmidt, S. Yemini, and S. Katz. High-level
language debugging for concurrent programs.ACM
Transactions on Computer Systems, 8(1), 1990.

[11] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InProceedings of the
International Conference on Software Engineering, May
2002.

[12] Eclipse technology - Hyades project. Project page at
http://www.eclipse.org/hyades/ .

[13] Java 2 Platform, Standard Edition, v 1.4.2 API Specification.
http://java.sun.com/j2se/1.4.2/docs/api/ .

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ.Lecture Notes
in Computer Science, 2072:327–355, 2001.

[15] M. Kim. Information Extraction for Run-time Formal
Analysis. Ph.D. thesis, CIS Dept., University of
Pennsylvania, 2001.

[16] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on formal
specifications. InIn Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1999.

[17] R. Lencevicius, U. Ḧolzle, and A. K. Singh. Query-based
debugging of object-oriented programs. InOOPSLA ’97:
Proceedings of the 12th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 304–317, New York, NY, USA, 1997.
ACM Press.

[18] Y. Liao. An Automatic Programming Approach to High Level
Program Monitoring and Measuring. Ph.D. thesis, Dept.
Computer Science, University of Southern California, Los
Angeles, CA., 1992.

[19] Y. Liao and D. Cohen. A specificational approach to high
level program monitoring and measuring.IEEE Transactions
On Software Engineering, 18(11):969–978, November 1992.

[20] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProceedings of the
ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, San Diego,
California, June 9–11 2003.

[21] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. InProceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, Illinois, June 12–15
2005.

[22] D. C. Luckham. Rapide: A language and toolset for
simulation of distributed systems by partial orderings of
events. InPOMIV ’96: Proceedings of the DIMACS
workshop on Partial order methods in verification, pages
329–357, New York, NY, USA, 1997. AMS Press, Inc.

[23] D. Marinov and R. O’Callahan. Object equality profiling. In
Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Anaheim, CA, Oct. 2003.

[24] M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query
language. InProceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2005.

[25] K. Ostermann, M. Mezini, and C. Bockisch. Expressive
pointcuts for increased modularity. InEuropean Conference
on Object-Oriented Programming (ECOOP), Springer
LNCS, 2005, 2005.

[26] Specjvm98 benchmarks. Information available at
http://www.specbench.org/osg/jvm98/ .

[27] R. J. Walker and K. Viggers. Implementing protocols via
declarative event patterns. InSIGSOFT ’04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering, pages
159–169, New York, NY, USA, 2004. ACM Press.

[28] WebSphere application server development best practices for
performance and scalability. White paper available from
http://www-3.ibm.com/software/webservers/
appserv/ws bestpractices.pdf , Sept. 2000.

